[1] M. Berger, P. Gauduchon et E. Mazet:
Le Spectre d’une Variété Riemannienne. Lecture Notes in Mathematics 194, Springer-Verlag, , 1971.
MR 0282313
[2] H. Kitahara, K. Matsuo and J. S. Pak:
A conformal curvature tensor field on hermitian manifolds; Appendium. J. Korean Math. Soc.; Bull. Korean Math. Soc. 27 (1990), 7–17; 27–30.
MR 1061071
[3] D. Krupka:
The trace decomposition problem. Beiträge zur Algebra und Geometrie Contributions to Algebra and Geometry 36 (1995), 303–315.
MR 1358429 |
Zbl 0839.15024
[4] J. S. Pak, K.-H. Cho and J.-H. Kwon:
Conformal curvature tensor field and spectrum of the Laplacian in Kaehlerian manifolds. Bull. Korean Math. Soc. 32 (1995), 309–319.
MR 1356087
[5] V. K. Patodi:
Curvature and the fundamental solution of the heat operator. J. Indian Math. Soc. 34 (1970), 269–285.
MR 0488181
[6] S. Tachibana: Riemannian Geometry. Asakura Shoten, Tokyo, 1967. (Japanese)
[8] Gr. Tsagas:
On the spectrum of the Laplace operator for the exterior 2-forms. Tensor N. S. 33 (1979), 94–96.
MR 0577217 |
Zbl 0408.53026
[9] S. Yamaguchi and G. Chuman:
Eigenvalues of the Laplacian of Sasakian manifolds. TRU Math. 15 (1979), 31–41.
MR 0564366
[10] K. Yano:
Differential Geometry on complex and almost complex spaces. Pergamon Press, New York, 1965.
MR 0187181 |
Zbl 0127.12405
[11] K. Yano and S. Ishihara:
Kaehlerian manifolds with constant scalar curvature whose Bochner curvature tensor vanishes. Hokkaido Math. J. 3 (1974), 297–304.
DOI 10.14492/hokmj/1381758810 |
MR 0362170