[1] J. Bang-Jensen, G. Gutin:
Digraphs: Theory, Algorithms and Applications. Springer-Verlag, London, 2000.
MR 2472389
[3] J. A. Bondy:
Diconnected orientations and a conjecture of Las Vergnas. J. London Math. Soc. 14 (1976), 277–282.
MR 0450115 |
Zbl 0344.05124
[4] P. Camion:
Chemins et circuits hamiltoniens des graphes complets. C. R. Acad. Sci. Paris 249 (1959), 2151–2152.
MR 0122735 |
Zbl 0092.15801
[5] W. D. Goddard, O. R. Oellermann:
On the cycle structure of multipartite tournaments. In: Graph Theory Combinat. Appl. 1, Y. Alavi, G. Chartrand, O. R. Oellermann, and A. J. Schenk (eds.), Wiley-Interscience, New York, 1991, pp. 525–533.
MR 1170802
[6] Y. Guo: Semicomplete multipartite digraphs: a generalization of tournaments. Habilitation thesis, RWTH Aachen, 1998.
[8] G. Gutin, A. Yeo:
Note on the path covering number of a semicomplete multipartite digraph. J. Combinat. Math. Combinat. Comput. 32 (2000), 231–237.
MR 1748910
[10] L. Rédei: Ein kombinatorischer Satz. Acta Litt. Sci. Szeged 7 (1934), 39–43.
[12] L. Volkmann:
Strong subtournaments of multipartite tournaments. Australas. J. Combin. 20 (1999), 189–196.
MR 1723872 |
Zbl 0935.05051
[13] L. Volkmann:
Cycles in multipartite tournaments: results and problems. Discrete Math. 245 (2002), 19–53.
MR 1887047 |
Zbl 0996.05063
[15] L. Volkmann, S. Winzen: Almost regular $c$-partite tournaments contain a strong subtournament of order $c$ when $c \ge 5$. Submitted.
[17] A. Yeo:
Semicomplete multipartite digraphs. Ph.D. Thesis, Odense University, 1998.
Zbl 0916.05049
[19] K.-M. Zhang:
Vertex even-pancyclicity in bipartite tournaments. Nanjing Daxue Xuebao Shuxue Bannian Kan 1 (1984), 85–88.
MR 0765176