Previous |  Up |  Next

Article

Title: Travel groupoids (English)
Author: Nebeský, Ladislav
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 56
Issue: 2
Year: 2006
Pages: 659-675
Summary lang: English
.
Category: math
.
Summary: In this paper, by a travel groupoid is meant an ordered pair $(V, *)$ such that $V$ is a nonempty set and $*$ is a binary operation on $V$ satisfying the following two conditions for all $u, v \in V$: \[ (u * v) * u = u; \text{ if }(u * v ) * v = u, \text{ then } u = v. \] Let $(V, *)$ be a travel groupoid. It is easy to show that if $x, y \in V$, then $x * y = y$ if and only if $y * x = x$. We say that $(V, *)$ is on a (finite or infinite) graph $G$ if $V(G) = V$ and \[ E(G) = \lbrace \lbrace u, v\rbrace \: u, v \in V \text{ and } u \ne u * v = v\rbrace . \] Clearly, every travel groupoid is on exactly one graph. In this paper, some properties of travel groupoids on graphs are studied. (English)
Keyword: travel groupoid
Keyword: graph
Keyword: path
Keyword: geodetic graph
MSC: 05C12
MSC: 05C25
MSC: 05C38
MSC: 20N02
idZBL: Zbl 1157.20336
idMR: MR2291765
.
Date available: 2009-09-24T11:36:44Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/128095
.
Reference: [1] G.  Chartrand, L.  Lesniak: Graphs & Digraphs. Third edition.Chapman & Hall, London, 1996. MR 1408678
Reference: [2] L.  Nebeský: An algebraic characterization of geodetic graphs.Czechoslovak Math.  J. 48(123) (1998), 701–710. MR 1658245, 10.1023/A:1022435605919
Reference: [3] L.  Nebeský: A tree as a finite nonempty set with a binary operation.Math. Bohem. 125 (2000), 455–458. MR 1802293
Reference: [4] L.  Nebeský: New proof of a characterization of geodetic graphs.Czechoslovak Math.  J. 52(127) (2002), 33–39. MR 1885455, 10.1023/A:1021715219620
Reference: [5] L.  Nebeský: On signpost systems and connected graphs.Czechoslovak Math.  J. 55(130) (2005), 283–293. MR 2137138, 10.1007/s10587-005-0022-0
.

Files

Files Size Format View
CzechMathJ_56-2006-2_30.pdf 338.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo