Previous |  Up |  Next

Article

Keywords:
prime submodule; primary submodule; ${\scr S}$-closed subsets; the radical formula
Summary:
In this paper, we use Zorn’s Lemma, multiplicatively closed subsets and saturated closed subsets for the following two topics: (i) The existence of prime submodules in some cases, (ii) The proof that submodules with a certain property satisfy the radical formula. We also give a partial characterization of a submodule of a projective module which satisfies the prime property.
References:
[1] Z. A.  El-Bast, P. F.  Smith: Multiplication modules. Comm. in Algebra 16 (1988), 755–779. DOI 10.1080/00927878808823601 | MR 0932633
[2] J.  Jenkins, P. F.  Smith: On the prime radical of a module over a commutative ring. Comm. in Algebra 20 (1992), 3593–9602. DOI 10.1080/00927879208824530 | MR 1191968
[3] C. U.  Jensen: A remark on flat and projective modules. Canad. J.  Math. 18 (1966), 943–949. DOI 10.4153/CJM-1966-093-7 | MR 0199226 | Zbl 0144.02302
[4] C. P.  Lu: Prime Submodules of modules. Comm. Math. Univ. Sancti Pauli 33 (1984), 61–69. MR 0741378 | Zbl 0575.13005
[5] C. P.  Lu: Union of prime submodules. Houston Journal of Math. 23 (1997), 203–213. MR 1682641
[6] R. L.  McCasland, M. E.  Moore: On radicals of submodules of finitely generated modules. Canad. Math. Bull. 29 (1986), 37–39. DOI 10.4153/CMB-1986-006-7 | MR 0824879
[7] R. L.  McCasland, M. E.  Moore: On radicals of submodules. Comm. in Algebra 19 (1991), 1327–1341. DOI 10.1080/00927879108824205 | MR 1111134
[8] R. L.  McCasland, P. F.  Smith: Prime submodules of Noetherian modules. Rocky Mountain J.  Math 23 (1993), 1041–1062. DOI 10.1216/rmjm/1181072540 | MR 1245463
[9] D.  Pusat-Yilmaz, P. F.  Smith: Modules which satisfy the radical formula. Acta. Math. Hungar. 1–2 (2002), 155–167. DOI 10.1023/A:1015624503160 | MR 1906216
[10] P. F.  Smith: Primary modules over commutative rings. Glasgow Math.  J. 43 (2001), 103–111. DOI 10.1017/S0017089501010084 | MR 1825725 | Zbl 0979.13003
[11] R. Y.  Sharp: Steps in Commutative Algebra. London Mathematical Society Student Text  19. Cambridge university Press, Cambridge, 1990. MR 1070568
Partner of
EuDML logo