[1] G. N. Agaev, N. Ya. Vilenkin, G. M. Dzhafarli and A. I. Rubinshtein:
Multiplicative systems of functions and harmonic analysis on zero-dimensional groups. Baku (1981). (Russian)
MR 0679132
[2] E. S. Bajgogin:
On a dyadic Perron integral. Vestnik Moskov. Univ. Ser. I Mat. Mekh. 48 (1993), 25–28.
MR 1274657
[4] B. Bongiorno, L. Di Piazza and V. A. Skvortsov:
A new full descriptive characterization of the Denjoy-Perron integral. Real Anal. Exchange. 21 (1995–96), 656–663.
MR 1407278
[5] B. Bongiorno, L. Di Piazza and V. A. Skvortsov:
On variational measures related to some bases. J. Math. Anal. Appl. 250 (2000), 533–547.
DOI 10.1006/jmaa.2000.6983 |
MR 1786079
[6] B. Bongiorno, L. Di Piazza and V. A. Skvortsov:
On dyadic integrals and some other integrals associated with local systems. J. Math. Anal. Appl. 271 (2002), 506–524.
DOI 10.1016/S0022-247X(02)00146-4 |
MR 1923649
[7] B. Bongiorno, L. Di Piazza and V. A. Skvortsov:
The Ward property for a ${\mathcal{P}}$-adic basis and the ${\mathcal{P}}$-adic integral. J. Math. Anal. Appl. 285 (2003), 578–592.
DOI 10.1016/S0022-247X(03)00426-8 |
MR 2005142
[9] Z. Buczolich and W. Pfeffer:
When absolutely continuous implies $\sigma $-finite. Acad. Roy. Belg. Bull. Cl. Sci. 8 (1997), 155–160.
MR 1625113
[11] W. Cai-shi and D. Chuan-Song:
An integral involving Thomson’s local systems. Real Anal. Exchange 19 (1993/94), 248–253.
MR 1268851
[13] V. Ene:
Real functions-Current Topics. Lecture Notes in Math., Vol. 1603, Springer-Verlag, 1995.
MR 1369575 |
Zbl 0866.26002
[14] V. Ene:
Thomson’s variational measures. Real Anal. Exchange 24 (1998/99), 523–565.
MR 1704732
[16] B. Golubov, A. Efimov and V. A. Skvortsov:
Walsh series and transforms-Theory and applications. Kluwer Academic Publishers, 1991.
MR 1155844
[17] R. A. Gordon:
The inversion of approximate and dyadic derivatives using an extension of the Henstock integral. Real Anal. Exchange 16 (1990–91), 154–168.
MR 1087481
[18] R. A. Gordon:
The Integrals of Lebesgue, Denjoy, Perron, and Henstock. Graduate Studies in Mathematics., Vol. 4, AMS, Providence, 1994.
MR 1288751 |
Zbl 0807.26004
[19] J. Jarník and J. Kurzweil:
Perron-type integration on $n$-dimensional intervals and its properties. Czechoslovak Math. J. 45 (1995), 79–106.
MR 1314532
[20] J. Kurzweil and J. Jarník:
Differentiability and integrability in $n$-dimension with respect to $\alpha $-regular intervals. Results Math. 21 (1992), 138–151.
DOI 10.1007/BF03323075 |
MR 1146639
[21] Tuo-Yeong Lee:
A full descriptive definition of the Henstok-Kurzwail integral in the Euclidean space. Proceedings of London Math. Society 87 (2003), 677–700.
DOI 10.1112/S0024611503014163 |
MR 2005879
[22] K. M. Ostaszewski:
Henstock integration in the plane. Memoirs of the AMS, Providence Vol. 353, 1986.
MR 0856159 |
Zbl 0596.26005
[23] W. F. Pfeffer:
The Riemann Approach to Integration. Cambridge Univ. Press, Cambridge, 1993.
MR 1268404 |
Zbl 0804.26005
[24] W. F. Pfeffer:
The Lebesgue and Denjoy-Perron integrals from a descriptive point of view. Ricerche di Matematica Vol. 48, 1999.
MR 1760817 |
Zbl 0951.26005
[25] S. Saks:
Theory of the integral. Dover, New York, 1964.
MR 0167578
[26] V. A. Skvortsov:
Variation and variational measures in integration theory and some applications. J. Math. Sci. (New York) 91 (1998), 3293–3322.
DOI 10.1007/BF02433805 |
MR 1657287
[27] V. A. Skvortsov and M. P. Koroleva:
Series in multiplicative systems convergent to Denjoy-integrable functions. Mat. sb. 186 (1995), 129–150.
MR 1376095
[28] V. A. Skvortsov and F. Tulone:
Generalized Henstock integrals in the theory of series with respect to multiplicative system. Vestnik Moskov. Gos. Univ. Ser. Mat. Mekh. 4 (2004), 7–11.
MR 2082794
[29] V. A. Skvortsov and Yu. A. Zherebyov:
On classes of functions generating absolutely continuous variational measures. Real. Anal. Exchange 30 (2004–2005), 361–372.
MR 2127542
[30] V. A. Skvortsov and Yu. A. Zherebyov:
On Radon-Nikodim derivative for the variational measure constructed by dyadic basis. Vestnik Moskov. Univ. Ser. I Mat. Mekh. (2004), 6–12 (Engl. transl. Moscow Univ. Math. Bull. 59 (2004), 5–11).
MR 2129296
[31] B. S. Thomson:
Real functions. Lecture Notes in Math., Vol. 1170, Springer-Verlag. 1985.
MR 0818744
[32] B. S. Thomson: Derivation bases on the real line. Real Anal. Exchange 8 (1982/83), 67–207 and 278–442.
[33] B. S. Thomson:
Some property of variational measures. Real Anal. Exchange 24 (1998/99), 845–853.
MR 1704758
[34] F. Tulone:
On the Ward Theorem for ${\mathcal{P}}$-adic path bases associated with a bounded sequence ${\mathcal{P}}$. Math. Bohem. 129 (2004), 313–323.
MR 2092717