Article
Keywords:
evolutionary processes; uniform exponential stability
Summary:
The exponential stability property of an evolutionary process is characterized in terms of the existence of some functionals on certain function spaces. Thus are generalized some well-known results obtained by Datko, Rolewicz, Littman and Van Neerven.
References:
[2] R. Datko:
Uniform asymptotic stability of evolutionary processes in a Banach space. SIAM. J. Math. Analysis 3 (1973), 428–445.
MR 0320465
[3] E. Hille and R. S. Phillips:
Functional Analysis and Semi-groups (revised edition). Amer. Math. Soc. Colloq. Publ. Vol. 31, Providence, R.I., 1957.
MR 0089373
[4] W. Littman:
A generalization of the theorem Datko-Pazy. Lecture Notes in Control and Inform. Sci., Springer Verlag 130 (1989), 318–323.
DOI 10.1007/BFb0043280 |
MR 1029070
[6] J. M. A. M. van Neerven:
The Asymptotic Behaviour of Semigroups of Linear Operators, Theory, Advances and Applications, Vol. 88. Birkhauser, 1996.
MR 1409370
[8] A. Pazy:
On the applicability of Liapunov’s theorem in Hilbert spaces. SIAM. J. Math. Anal. Appl. 3 (1972), 291–294.
DOI 10.1137/0503028 |
MR 0317105
[9] A. Pazy:
Semigroups of Linear Operators and Applications to Partial Differential Equations. Springer-Verlag, 1983.
MR 0710486 |
Zbl 0516.47023