Previous |  Up |  Next

Article

Keywords:
$k_R$-spaces; $k$-spaces; $k$-networks; $\sigma $-hereditarily closure-preserving collections; point-countable collections
Summary:
In this note we study the relation between $k_R$-spaces and $k$-spaces and prove that a $k_R$-space with a $\sigma $-hereditarily closure-preserving $k$-network consisting of compact subsets is a $k$-space, and that a $k_R$-space with a point-countable $k$-network consisting of compact subsets need not be a $k$-space.
References:
[1] V. Pták: On complete topological linear spaces. Czechoslovak Math.  J. 3(78) (1953), 301–364. (Russian, English Summary) MR 0064303
[2] E. Michael: On $k$-spaces, $k_R$-spaces and $k(X)$. Pac. J.  Math. 47 (1973), 487–498. MR 0331328 | Zbl 0262.54017
[3] S. Lin: Note on $k_R$-space. Quest. Answers Gen. Topology 9 (1991), 227–236. MR 1113875
[4] S. Lin: On $R$-quotient $ss$-mappings. Acta Math. Sin. 34 (1991), 7–11. (Chinese) MR 1107584 | Zbl 0760.54009
[5] Z. Yun: On $k_R$-spaces and $k$-spaces. Adv. Math., Beijing 29 (2000), 223–226. MR 1789423 | Zbl 0996.54037
[6] P. O’Meara: On paracompactness in function spaces with the compact-open topology. Proc. Am. Math. Soc. 29 (1971), 183–189. MR 0276919
[7] Jinjin Li: $k$-covers and certain quotient images of paracompact locally compact spaces. Acta Math. Hungar 95 (2002), 281–286. DOI 10.1023/A:1015645107703 | MR 1909598
[8] R. Borges: A stratifiable $k_R$-space which is not a $k$-space. Proc. Am. Math. Soc. 81 (1981), 308–310. MR 0593478 | Zbl 0447.54033
Partner of
EuDML logo