[1] L. Boccardo, P. Drábek, D. Giachetti, and M. Kučera:
Generalizations of Fredholm alternative for nonlinear differential operators. Nonlin. Anal. 10 (1986), 1083–1103.
DOI 10.1016/0362-546X(86)90091-X |
MR 0857742
[2] H. Dang, S. F. Oppenheimer:
Existence and uniqueness results for some nonlinear boundary value problems. J. Math. Anal. Appl. 198 (1996), 35–48.
DOI 10.1006/jmaa.1996.0066 |
MR 1373525
[4] F. S. De Blasi, G. Pianigiani:
The Baire category method in existence problem for a class of multivalued equations with nonconvex right hand side. Funkcialaj Ekvacioj 28 (1985), 139–156.
MR 0816823
[6] F. S. De Blasi, G. Pianigiani:
On the density of extremal solutions of differential inclusions. Annales Polon. Math. LVI (1992), 133–142.
MR 1159984
[9] L. Erbe, W. Krawcewicz:
Nonlinear boundary value problems for differential inclusions $y^{\prime \prime }\in F(t,y,y^{\prime })$. Annales Polon. Math. LIV (1991), 195–226.
MR 1114171
[10] M. Frigon:
Theoremes d’existence des solutions d’inclusion differentielles. In: NATO ASI Series, Section C, 472, Kluwer, Dordrecht, 1995, pp. 51–87.
MR 1368670
[11] R. Gaines, J. Mawhin:
Coincidence Degree and Nonlinear Differential Equations. Lecture Notes in Math. 568. Springer-Verlag, New York, 1977.
MR 0637067
[12] L. Gasiński, N. S. Papageorgiou:
Nonsmooth Critical Point Theory and Nonlinear Boundary Value Problems. Chapman and Hall/CRC Press, Boca Raton, 2005.
MR 2092433
[13] Z. Guo:
Boundary value problems of a class of quasilinear ordinary differential equations. Diff. Integ. Eqns. 6 (1993), 705–719.
Zbl 0784.34018
[14] N. Halidias, N. S. Papageorgiou:
Existence and relaxation results for nonlinear second order multivalued boundary value problems in $\mathbb{R}^N$. J. Differ. Equations 147 (1998), 123–154.
DOI 10.1006/jdeq.1998.3439 |
MR 1632661
[17] S. Hu, D. Kandilakis, N. S. Papageorgiou:
Periodic solutions for nonconvex differential inclusions. Proc. AMS 127 (1999), 89–94.
MR 1451808
[18] S. Hu, N. S. Papageorgiou:
On the existence of periodic solutions for nonconvex-valued differential inclusions in $\mathbb{R}^N$. Proc. AMS 123 (1995), 3043–3050.
MR 1301503
[19] S. Hu, N. S. Papageorgiou:
Handbook of Multivalued Analysis. Volume I: Theory. Kluwer, Dordrecht, 1997.
MR 1485775
[20] S. Hu, N. S. Papageorgiou:
Handbook of Multivalued Analysis. Volume II: Applications. Kluwer, Dordrecht, 2000.
MR 1741926
[21] D. Kandilakis, N. S. Papageorgiou:
Existence theorem for nonlinear boundary value problems for second order differential inclusions. J. Differ. Equations 132 (1996), 107–125.
DOI 10.1006/jdeq.1996.0173 |
MR 1418502
[22] D. Kandilakis, N. S. Papageorgiou:
Neumann problem for a class of quasilinear differential equations. Atti. Sem. Mat. Fisico Univ. di Modena 48 (2000), 163–177.
MR 1767378
[23] H. W. Knobloch:
On the existence of periodic solutions for second order vector differential equations. J. Differ. Equations 9 (1971), 67–85.
MR 0277824 |
Zbl 0211.11801
[24] M. Marcus, V. Mizel:
Absolute continuity on tracks and mappings of Sobolev spaces. Arch. Rational Mech. Anal. 45 (1972), 294–320.
DOI 10.1007/BF00251378 |
MR 0338765