Previous |  Up |  Next

Article

Keywords:
natural operator; product preserving bundle functor; Weil algebra
Summary:
We define equivariant tensors for every non-negative integer $p$ and every Weil algebra $A$ and establish a one-to-one correspondence between the equivariant tensors and linear natural operators lifting skew-symmetric tensor fields of type $(p,0)$ on an $n$-dimensional manifold $M$ to tensor fields of type $(p,0)$ on $T^AM$ if $1\le p\le n$. Moreover, we determine explicitly the equivariant tensors for the Weil algebras ${\mathbb D}^r_k$, where $k$ and $r$ are non-negative integers.
References:
[1] J.  Gancarzewicz, W.  Mikulski and Z.  Pogoda: Lifts of some tensor fields and connections to product preserving functors. Nagoya Math.  J. 135 (1994), 1–41. DOI 10.1017/S0027763000004931 | MR 1295815
[2] J.  Grabowski and P.  Urbański: Tangent lifts of Poisson and related structures. J.  Phys.  A 28 (1995), 6743–6777. DOI 10.1088/0305-4470/28/23/024 | MR 1381143
[3] P. Kolář, P.  W.  Michor and J.  Slovák: Natural Operations in Differential Geometry. Springer-Verlag, Berlin, 1993. MR 1202431
[4] M.  Mikulski: Natural transformations transforming functions and vector fields to functions on some natural bundles. Math. Bohem. 117 (1992), 217–223. MR 1165899 | Zbl 0810.58004
[5] W. M.  Mikulski: The linear natural operators lifting 2-vector fields to some Weil bundles. Note Mat. 19 (1999), 213–217. MR 1816875 | Zbl 1008.58004
Partner of
EuDML logo