[1] F. Ajili and E. Contejean:
Avoiding slack variables in the solving of linear Diophantine equations and inequations. Principles and practice of constraint programming. Theoret. Comput. Sci. 173 (1997), 183–208.
DOI 10.1016/S0304-3975(96)00195-8 |
MR 1436701
[2] R. Apéry:
Sur les branches superlinéaires des courbes algébriques. C. R. Acad. Sci. Paris 222 (1946).
MR 0017942
[3] V. Barucci, D. E. Dobbs and M. Fontana:
Maximality Properties in Numerical Semigroups and Applications to One-Dimensional Analytically Irreducible Local Domains. Memoirs of the Amer. Math. Soc. Vol. 598. , 1997.
MR 1357822
[6] H. Bresinsky:
On prime ideals with generic zero $x_i=t^{n_i}$. Proc. Amer. Math. Soc. 47 (1975), 329–332.
MR 0389912
[7] E. Contejean and H. Devie:
An efficient incremental algorithm for solving systems of linear diophantine equations. Inform. and Comput. 113 (1994), 143–172.
DOI 10.1006/inco.1994.1067 |
MR 1283022
[9] R. Fröberg, C. Gottlieb and R. Häggkvist: Semigroups, semigroup rings and analytically irreducible rings. Reports Dpt. of Mathematics, University of Stockholm, Vol. 1, 1986.
[10] R. Fröberg, C. Gottlieb and R. Häggkvist:
On numerical semigroups. Semigroup Forum 35 (1987), 63–83.
DOI 10.1007/BF02573091
[11] P. A. García-Sánchez and J. C. Rosales:
Numerical semigroups generated by intervals. Pacific J. Math. 191 (1999), 75–83.
DOI 10.2140/pjm.1999.191.75
[15] J. L. Ramírez Alfonsín: The Diophantine Frobenius problem. Forschungsintitut für Diskrete Mathematik, Bonn, Report No.00893, 2000.
[16] J. L. Ramírez Alfonsín: The Diophantine Frobenius problem, manuscript.
[19] J. C. Rosales and M. B. Branco:
Numerical semigroups that can be expressed as an intersection of symmetric numerical semigroups. J. Pure Appl. Algebra 171 (2002), 303–314.
DOI 10.1016/S0022-4049(01)00128-1 |
MR 1904486
[20] J. C. Rosales and P. A. García-Sánchez:
Finitely Generated Commutative Monoids. Nova Science Publishers, New York, 1999.
MR 1694173
[21] J. C. Rosales, P. A. García-Sánchez, J. I. García-García and M. B. Branco:
Systems of inequalities and numerical semigroups. J. London Math. Soc. 65 (2002), 611–623.
DOI 10.1112/S0024610701003052 |
MR 1895736
[22] J. C. Rosales, P. A. García-Sánchez, J. I. García-García and J. M. Urbano-Blanco:
Proportionally modular Diophantine inequalities. J. Number Theory 103 (2003), 281–294.
DOI 10.1016/j.jnt.2003.06.002 |
MR 2020273
[23] E. S. Selmer:
On a linear Diophantine problem of Frobenius. J. Reine Angew. Math. 293/294 (1977), 1–17.
MR 0441855