[1] T. S. Chew, J. Y. Tay and T. L. Toh:
The non-uniform Riemann approach to Itô’s integral. Real Anal. Exchange 27 (2001/2002), 495–514.
MR 1922665
[5] J. Kurzweil:
Generalized ordinary differential equations and continuous dependence on a parameter. Czechoslovak Math. J. 7 (1957), 418–446.
MR 0111875 |
Zbl 0090.30002
[6] E. J. McShane:
Stochastic Calculus and Stochastic Models. Academic Press, New York, 1974.
MR 0443084 |
Zbl 0292.60090
[9] P. Protter:
Stochastic Integration and Differential Equations. Springer, New York, 1990.
MR 1037262 |
Zbl 0694.60047
[10] T. L. Toh and T. S. Chew:
A variational approach to Itô’s integral. Proceedings of SAP’s 98, Taiwan P291-299, World Scientifc, Singapore, 1999.
MR 1819215
[12] T. L. Toh: The Riemann approach to stochastic integration. PhD. Thesis, National University of Singapore, Singapore, 2001.
[13] J. G. Xu and P. Y. Lee:
Stochastic integrals of Itô and Henstock. Real Anal. Exchange 18 (1992/3), 352–366.
MR 1228401