Previous |  Up |  Next

Article

Keywords:
generalized Riemann approach; stochastic integral; integration-by-parts
Summary:
In this paper we derive the Integration-by-Parts Formula using the generalized Riemann approach to stochastic integrals, which is called the Itô-Kurzweil-Henstock integral.
References:
[1] T. S. Chew, J. Y. Tay and T. L. Toh: The non-uniform Riemann approach to Itô’s integral. Real Anal. Exchange 27 (2001/2002), 495–514. MR 1922665
[2] R.  Henstock: The efficiency of convergence factors for functions of a continuous real variable. J.  London Math. Soc. 30 (1955), 273–286. DOI 10.1112/jlms/s1-30.3.273 | MR 0072968 | Zbl 0066.09204
[3] R.  Henstock: Lectures on the Theory of Integration. World Scientific, Singapore, 1988. MR 0963249 | Zbl 0668.28001
[4] R.  Henstock: The General Theory of Integration. Oxford Science, , 1991. MR 1134656 | Zbl 0745.26006
[5] J. Kurzweil: Generalized ordinary differential equations and continuous dependence on a parameter. Czechoslovak Math. J. 7 (1957), 418–446. MR 0111875 | Zbl 0090.30002
[6] E. J.  McShane: Stochastic Calculus and Stochastic Models. Academic Press, New York, 1974. MR 0443084 | Zbl 0292.60090
[7] Z. R.  Pop-Stojanović: On McShane’s belated stochastic integral. SIAM J.  Appl. Math. 22 (1972), 89–92. DOI 10.1137/0122010 | MR 0322954
[8] P.  Protter: A comparison of stochastic integrals. Ann. Probability 7 (1979), 276–289. DOI 10.1214/aop/1176995088 | MR 0525054 | Zbl 0404.60062
[9] P.  Protter: Stochastic Integration and Differential Equations. Springer, New York, 1990. MR 1037262 | Zbl 0694.60047
[10] T. L.  Toh and T. S. Chew: A variational approach to Itô’s integral. Proceedings of  SAP’s  98, Taiwan P291-299, World Scientifc, Singapore, 1999. MR 1819215
[11] T. L.  Toh and T. S. Chew: The Riemann approach to stochastic integration using non-uniform meshes. J.  Math. Anal. Appl. 280 (2003), 133–147. DOI 10.1016/S0022-247X(03)00059-3 | MR 1972197
[12] T. L.  Toh: The Riemann approach to stochastic integration. PhD. Thesis, National University of Singapore, Singapore, 2001.
[13] J. G.  Xu and P. Y. Lee: Stochastic integrals of Itô and Henstock. Real Anal. Exchange 18 (1992/3), 352–366. MR 1228401
Partner of
EuDML logo