Article
Keywords:
Pólya’s enumeration theorem; partitions of a positive integer into a non-empty subset of positive integers; distinct partitions of a positive integer into a non-empty subset of positive integers; recursive formulas and algorithms
Summary:
Let $S$ be a non-empty subset of positive integers. A partition of a positive integer $n$ into $S$ is a finite nondecreasing sequence of positive integers $a_1, a_2, \dots , a_r$ in $S$ with repetitions allowed such that $\sum ^r_{i=1} a_i = n$. Here we apply Pólya’s enumeration theorem to find the number $¶(n;S)$ of partitions of $n$ into $S$, and the number ${\mathrm DP}(n;S)$ of distinct partitions of $n$ into $S$. We also present recursive formulas for computing $¶(n;S)$ and ${\mathrm DP}(n;S)$.
References:
[2] N. G. De Bruijn:
Pólya’s theory of counting. Appl. Combin. Math., E. F. Beckenbach (ed.), Wiley, New York, 1964, pp. 144–184.
Zbl 0144.00601
[4] F. Harary and E. M. Palmer:
Graphical Enumeration. Academic Press, New York-London, 1973.
MR 0357214
[6] G. Pólya:
Kombinatorische Anzahlbestimmungen für Gruppen, Graphen und chemische Verbindungen. Acta Math. 68 (1937), 145–254.
DOI 10.1007/BF02546665
[7] G. Pólya and R. C. Read:
Combinatorial Enumeration of Groups, Graphs and Chemical Compounds. Springer-Verlag, New York, 1987.
MR 0884155