Previous |  Up |  Next

Article

Keywords:
hyper $K$-algebra; hyper $K$-ideal; (weak; strong) implicative hyper $K$-algebras; (weak) implicative hyper $K$-ideal
Summary:
In this note we first define the notions of (weak, strong) implicative hyper $K$-algebras. Then we show by examples that these notions are different. After that we state and prove some theorems which determine the relationship between these notions and (weak) hyper $K$-ideals. Also we obtain some relations between these notions and (weak) implicative hyper $K$-ideals. Finally, we study the implicative hyper $K$-algebras of order 3, in particular we obtain a relationship between the positive implicative hyper $K$-algebras and (weak, strong) implicative hyper $K$-algebras under a simple condition.
References:
[1] A.  Borumand Saeid, R. A.  Borzooei and M. M.  Zahedi: (Weak) implicative hyper $K$-ideals. Bull. Korean Math. Soc. 40 (2003), 123–137. DOI 10.4134/BKMS.2003.40.1.123 | MR 1958230
[2] R. A.  Borzooei, P.  Corsini and M. M.  Zahedi: Some kinds of positive implicative hyper $K$-ideals. Journal of Discrete Mathematical Sciences and Cryptography 6 (2003), 97–108. DOI 10.1080/09720529.2003.10697966 | MR 1988047
[3] R. A.  Borzooei, A.  Hasankhani, M. M.  Zahedi and Y. B.  Jun: On hyper $K$-algebras. Math. Japon. 52 (2000), 113–121. MR 1783185
[4] R. A.  Borzooei and M. M.  Zahedi: Positive implicative hyper $K$-ideals. Scientiae Mathematicae Japonicae 53 (2001), 525–533. MR 1835922
[5] Y.  Imai and K.  Iseki: On axiom systems of propositional calculi. XIV Proc. Japan Academy 42 (1966), 19–22. MR 0195704
[6] Y. B.  Jun, M. M.  Zahedi, X. L.  Xin and R. A.  Borzooei: On hyper $BCK$-algebras. Ital. J. Pure Appl. Math. (2000), 127–136. MR 1793750
[7] F.  Marty: Sur une generalization de la notion de groups. 8th Congress Math. Scandinaves, Stockholm, 1934, pp. 45–49.
[8] J.  Meng and Y. B.  Jun: $BCK$-Algebras. Kyung Moonsa, Seoul, 1994. MR 1297121
[9] D.  Mundici: $MV$-algebras are categorically equivalent to bounded commutative $BCK$-algebras. Math. Japon. 31 (1986), 889–894. MR 0870978 | Zbl 0633.03066
[10] M. M.  Zahedi, R. A.  Borzooei and H.  Rezaei: Some classification of hyper $K$-algebras of order  3. Scientiae Mathematicae Japonicae 53 (2001), 133–142. MR 1821608
[11] M. M.  Zahedi, R. A.  Borzooei, Y. B.  Jun and A.  Hasankhani: Some results on hyper $K$-algebra. Scientiae Mathematicae 3 (2000), 53–59. MR 1758830
Partner of
EuDML logo