Previous |  Up |  Next

Article

Keywords:
oscillation theory
Summary:
In this paper two sequences of oscillation criteria for the self-adjoint second order differential equation $(r(t)u^{\prime }(t))^{\prime }+p(t)u(t)=0$ are derived. One of them deals with the case $\int ^{\infty }\frac{{\mathrm d}t}{r(t)}=\infty $, and the other with the case $\int ^{\infty }\frac{{\mathrm d}t}{r(t)}<\infty $.
References:
[1] J. H. Barrett: Oscillation theory of ordinary linear differential equations. Adv. Math. 3 (1969), 415–509. DOI 10.1016/0001-8708(69)90008-5 | MR 0257462 | Zbl 0213.10801
[2] M. Cecchi, M. Marini and G. Villari: Integral criteria for a classification of solutions of linear differential equations. J.  Differential Equations 99 (1992), 381–397. DOI 10.1016/0022-0396(92)90027-K | MR 1184060
[3] J. Dzurina: Property  (A) of advanced functional differential equations. Math. Slovaca 45 (1995), 129–137. MR 1357069 | Zbl 0840.34075
[4] P. Hartman: Ordinary Differential Equations. Wiley, New York, 1964. MR 0171038 | Zbl 0125.32102
[5] J. Ohriska: Oscillation of differential equations and $v$-derivatives. Czechoslovak Math.  J. 39(114) (1989), 24–44. MR 0983481 | Zbl 0673.34044
[6] J. Ohriska: On the oscillation of a linear differential equation of second order. Czechoslovak Math. J. 39(114) (1989), 16–23. MR 0983480 | Zbl 0673.34043
[7] W. T. Reid: Sturmian Theory for Ordinary Differential Equations. Springer-Verlag, New York, 1980. MR 0606199 | Zbl 0459.34001
[8] D. Willett: Classification of second order linear differential equations with respect to oscillation. Adv. Math. 3 (1969), 594–623. DOI 10.1016/0001-8708(69)90011-5 | MR 0280800 | Zbl 0188.40101
Partner of
EuDML logo