[1] M. Cecchi, M. Marini and G. Villari:
On some classes of continuable solutions of a nonlinear differential equation. J. Diff. Equat. 118 (1995), 403–419.
DOI 10.1006/jdeq.1995.1079 |
MR 1330834
[3] C. V. Coffman and J. S. W. Wong:
Oscillation and nonoscillation theorems for second order differential equations. Funkcialaj Ekvacioj 15 (1972), 119–130.
MR 0333337
[5] L. H. Erbe and J. S. Muldowney:
On the existence of oscillatory solutions to nonlinear differential equations. Ann. Mat. Pura Appl. 59 (1976), 23–37.
MR 0481254
[6] L. H. Erbe and H. Lu:
Nonoscillation theorems for second order nonlinear differential equations. Funkcialaj Ekvacioj 33 (1990), 227–244.
MR 1078128
[9] D. V. Izjumova: On oscillation and nonoscillation conditions for solutions of nonlinear second order differential equations. Diff. Urav. 11 (1966), 1572–1586. (Russian)
[10] M. Jasný: On the existence of oscillatory solutions of the second order nonlinear differential equation $y^{\prime \prime }+f(x)y^{2n-1}=0$. Čas. Pěst. Mat. 85 (1960), 78–83. (Russian)
[11] I. Kiguradze and A. Chanturia:
Asymptotic Properties of Solutions of Nonautonomous Ordinary Differential Equations. Kluwer Acad. Publ., , 1993.
MR 1220223
[12] J. Kurzweil: A note on oscillatory solutions of the equation $y^{\prime \prime }+f(x)y^{2n-1}=0$. Čas. Pěst. Mat. 82 (1957), 218–226. (Russian)
[14] S. Matucci:
On asymptotic decaying solutions for a class of second order differential equations. Arch. Math. (Brno) 35 (1999), 275–284.
MR 1725843 |
Zbl 1048.34088
[15] J. D. Mirzov: Asymptotic properties of solutions of the systems of nonlinear nonautonomous ordinary differential equations. (1993), Adygeja Publ., Maikop. (Russian)
[17] J. Sugie and K. Kita:
Oscillation criteria for second order nonlinear differential equations of Euler type. J. Math. Anal. Appl. 253 (2001), 414–439.
DOI 10.1006/jmaa.2000.7149 |
MR 1808146