Previous |  Up |  Next

Article

Keywords:
measurable selectors; upper semi-continuous maps; point of continuity property
Summary:
In this paper we deal with weakly upper semi-continuous set-valued maps, taking arbitrary non-empty values, from a non-metric domain to a Banach space. We obtain selectors having the point of continuity property relative to the norm topology for a large class of compact spaces as a domain. Exact conditions under which the selector is of the first Borel class are also investigated.
References:
[1] G. Gruenhage: A note on Gul’ko compact spaces. Proc. Amer. Math. Soc. 100 (1987), 371–376. MR 0884482 | Zbl 0622.54020
[2] G. Koumoullis: A generalization of functions of the first class. Topology Appl. 50 (1993), 217–239. DOI 10.1016/0166-8641(93)90022-6 | MR 1227551 | Zbl 0788.54036
[3] W. R. Hansell: First class selectors for upper semi-continuous multifunctions. J.  Funct. Anal. 75 (1987), 382–395. DOI 10.1016/0022-1236(87)90102-9 | MR 0916758 | Zbl 0644.54014
[4] R. W. Hansell: Descriptive sets and the topology of nonseparable Banach spaces. Serdica Math.  J. 27 (2001), 1–66. MR 1828793 | Zbl 0982.46012
[5] R. W. Hansell: First class functions with values in nonseparable spaces. Constantin Carathéodory: An International Tribute, Vols. I, II, World Sci. Publishing, Teaneck, 1991, pp. 461–475. MR 1130849 | Zbl 0767.54010
[6] R. W. Hansell: Descriptive Topology. Recent Progress in General Topology. M.  Husec and J.  van Mill (eds.), Elsevier Science Publishers, , 1992. MR 1229121
[7] R. W. Hansell, J. E. Jayne, and M. Talagrand: First class selector for weakly upper semi-continuous multivalued maps in Banach spaces. J.  Reine Angew. Math. 361 (1985), 201–220. MR 0807260
[8] J. E. Jayne, J. Orihuela, A. J. Pallarés, and G. Vera: $\sigma $-fragmentability of multivalued maps and selection theorems. J.  Funct. Anal. 117 (1993), 243–273. DOI 10.1006/jfan.1993.1127 | MR 1244937
[9] J. E. Jayne, C. A. Rogers: Borel selectors for upper semi-continuous set-valued maps. Acta. Math. 155 (1985), 41–79. DOI 10.1007/BF02392537 | MR 0793237
[10] I. Namioka: Radon-Nikodým compact spaces and fragmentability. Mathematika 34 (1989), 258–281. MR 0933504
[11] L. Oncina: Descriptive Banach spaces and Eberlein compacta. Doctoral Thesis, Universidad de Murcia, 1999.
[12] N. K. Ribarska: Internal characterization of fragmentable spaces. Mathematika 34 (1987), 243–257. DOI 10.1112/S0025579300013498 | MR 0933503 | Zbl 0645.46017
[13] V. V. Srivatsa: Baire class  1 selectors for upper-semicontinuous set-valued maps. Trans. Amer. Math. Soc. 337 (1993), 609–624. MR 1140919 | Zbl 0822.54017
[14] M. Talagrand: Pettis Integral and Measure Theory. Mem. Amer. Math. Soc. 307, Providence, 1984, pp. 224. MR 0756174 | Zbl 0582.46049
Partner of
EuDML logo