Previous |  Up |  Next

Article

Keywords:
associative algebras; infinite systems of identities; Specht’s problem.
Summary:
In this paper some infinitely based varieties of groups are constructed and these results are transferred to the associative algebras (or Lie algebras) over an infinite field of an arbitrary positive characteristic.
References:
[1] W.  Specht: Gesetze in Ringen  1. Math. Z. 52 (1950), 557–589. DOI 10.1007/BF02230710 | MR 0035274
[2] A. P.  Kemer: Finite basing of the identities of the associative algebras. Algebra i logika 26 (1987), 597–641. (Russian) DOI 10.1007/BF01978692 | MR 0985840
[3] V. V.  Schigolev: Examples of infinitely based $T$-spaces. Matem. sb. 191 (2000), 143–160. (Russian) MR 1773258
[4] A. I.  Belov: Counterexamples to the Specht’s problem. Matem. sb. 191 (2000), 13–24. (Russian) MR 1773251
[5] N. I.  Sandu: Infinite independent systems of the identities of the associative algebras over an infinite field of characteristic 2. Matem. zametki 74 (2003), 603–611. (Russian) MR 2042973
[6] The Dnestr Notebook. Unsolved Problems of the Ring and Module Theory. Institute of Mathematics of SD AS USSS, Novosibirsk, 1982. (Russian)
[7] A. E.  Zalesskij and A. V.  Mikhalev: Group rings. The results of science and technique. Modern Mathematics Problems. Main Directions, VINITI, Moskva, 1973, pp. 5–118. (Russian) MR 0414623
[8] M. R. Vaughan-Lee: Uncountably many varieties of groups. Bull. London Math. Soc. 2 (1970), 280–286. DOI 10.1112/blms/2.3.280 | MR 0276307 | Zbl 0216.08401
[9] S.  Leng: Algebra. Addison-Wesley Publishing Company, Reading, 1965. MR 0197234
[10] W.  Magnus, A.  Karrass and D.  Solitar: Combinatorial Group Theory. Wiley, New York, 1966.
[11] M. R. Vaughan-Lee: Varieties of Lie algebras. Quart. J.  Math. 21 (1970), 297–308. DOI 10.1093/qmath/21.3.297 | MR 0269710 | Zbl 0204.35901
[12] V. S.  Drenski: About identities in Lie algebras. Algebra i logika 13 (1974), 265–290. (Russian) DOI 10.1007/BF01463349 | MR 0374220
Partner of
EuDML logo