Article
Keywords:
nonlinear elliptic systems; regularity up to the boundary
Summary:
Regularity results for elliptic systems of second order quasilinear PDEs with nonlinear growth of order $q>2$ are proved, extending results of [7] and [10]. In particular Hölder regularity of the solutions is obtained if the dimension $n$ is less than or equal to $q + 2$.
References:
[1] S. Campanato:
Equazioni ellittiche del secondo ordine e spazi $L^{2, \lambda }$. Ann. Mat. Pura e Appl. 69 (1965), 321–381.
DOI 10.1007/BF02414377 |
MR 0192168
[2] S. Campanato:
Sistemi ellittici in forma di divergenza. Regolarità all’interno. Quaderni S.N.S. di Pisa, 1980.
MR 0668196
[3] S. Campanato:
Elliptic systems with nonlinearity $q$ greater or equal to two. Regularity of the solution of the Dirichlet Problem. Ann. Mat. Pura e Appl. 147 (1987), 117–150.
DOI 10.1007/BF01762414 |
MR 0916705 |
Zbl 0635.35038
[5] S. Campanato: A maximum principle for nonlinear elliptic systems. Atti Convegno commem. di M. Picone e L. Tonelli vol. , Acc. Lincei, Roma, 1985, pp. 173–182.
[6] E. De Giorgi:
Un esempio di estremali discontinue per un problema variazionale di tipo ellittico. Boll. Un. Mat. Ital. 1 (1968), 135–137.
MR 0227827
[7] L. Fattorusso, G. Idone:
Hölder regularity for nonlinear nonhomogeneous elliptic systems. Le Matematiche 50 (1995), 285–306.
MR 1414636
[8] J. Frehse:
On the boundedness of weak solutions of higher order nonlinear elliptic partial differential equations. Boll. Un. Mat. Ital. 4 (1970), 607–627.
MR 0274938 |
Zbl 0203.41303