[1] S. Y. Alper:
Approximation in the mean of analytic functions of class $E^p$. In: Investigations on the Modern Problems of the Function Theory of a Complex Variable, Gos. Izdat. Fiz.-Mat. Lit., Moscow, 1960, pp. 272–286. (Russian)
MR 0116101
[3] A. Çavuş and D. M. Israfilov:
Approximation by Faber-Laurent rational functions in the mean of functions of the class $L_{p}(\Gamma ) $ with $1. Approximation Theory App. 11 (1995), 105–118. MR 1341424
[4] G. David:
Operateurs integraux singulers sur certaines courbes du plan complexe. Ann. Sci. Ecol. Norm. Super. 4 (1984), 157–189.
DOI 10.24033/asens.1469 |
MR 0744071
[5] P. L. Duren:
Theory of $H^p$-Spaces. Academic Press, , 1970.
MR 0268655
[6] E. M. Dyn’kin and B. P. Osilenker:
Weighted estimates for singular integrals and their applications. In: Mathematical analysis, Vol. 21, Akad. Nauk SSSR, Vsesoyuz. Inst. Nauchn. i Tekhn. Inform., Moscow, 1983, pp. 42–129. (Russian)
MR 0736522
[8] G. M. Golusin:
Geometric Theory of Functions of a Complex Variable. Translation of Mathematical Monographs, Vol. 26, AMS, 1969.
MR 0247039
[9] E. A. Haciyeva: Investigation of the properties of functions with quasimonotone Fourier coefficients in generalized Nikolsky-Besov spaces. Author’s summary of candidates dissertation. (1986), Tbilisi. (Russian)
[10] I. I. Ibragimov and D. I. Mamedhanov:
A constructive characterization of a certain class of functions. Dokl. Akad. Nauk SSSR 223 (1975), 35–37.
MR 0470218
[11] D. M. Israfilov:
Approximate properties of the generalized Faber series in an integral metric. Izv. Akad. Nauk Az. SSR, Ser. Fiz.-Tekh. Math. Nauk 2 (1987), 10–14. (Russian)
MR 0946314 |
Zbl 0655.30023
[12] D. M. Israfilov:
Approximation by $p$-Faber polynomials in the weighted Smirnov class $E^p(G,\omega )$ and the Bieberbach polynomials. Constr. Approx. 17 (2001), 335–351.
DOI 10.1007/s003650010030 |
MR 1828916
[13] V. M. Kokilashvili:
A direct theorem on mean approximation of analytic functions by polynomials. Soviet Math. Dokl. 10 (1969), 411–414.
Zbl 0212.09901
[14] A. I. Markushevich: Theory of Analytic Functions, Vol. 2. Izdatelstvo Nauka, Moscow, 1968.
[16] P. K. Suetin:
Series of Faber Polynomials. Nauka, Moscow, 1984; Cordon and Breach Publishers, 1998.
MR 0774773 |
Zbl 0936.30026
[17] J. L. Walsh and H. G. Russel:
Integrated continuity conditions and degree of approximation by polynomials or by bounded analytic functions. Trans. Amer. Math. Soc. 92 (1959), 355–370.
DOI 10.1090/S0002-9947-1959-0108595-3 |
MR 0108595
[18] M. Wehrens:
Best approximation on the unit sphere in $R^n$. Funct. Anal. and Approx. Proc. Conf. Oberwolfach. Aug. 9-16, 1980, Basel, 1981, pp. 233–245.
MR 0650278 |
Zbl 0529.41024