Previous |  Up |  Next

Article

Keywords:
double sequence; positive definite; moment sequence
Summary:
The first explicit example of a positive semidefinite double sequence which is not a moment sequence was given by Friedrich. We present an example with a simpler definition and more moderate growth as $(m, n) \rightarrow \infty $.
References:
[1] C. Berg, J. P. R. Christensen and C. U. Jensen: A remark on the multidimensional moment problem. Math. Ann. 243 (1979), 163–169. DOI 10.1007/BF01420423 | MR 0543726
[2] C. Berg, J. P. R. Christensen and P. Ressel: Harmonic Analysis on Semigroups. Springer-Verlag, Berlin, 1984. MR 0747302
[3] T. M. Bisgaard: On the growth of positive definite double sequences which are not moment sequences. Math. Nachr. 210 (2000), 67–83. DOI 10.1002/(SICI)1522-2616(200002)210:1<67::AID-MANA67>3.0.CO;2-N | MR 1738938 | Zbl 0953.43004
[4] T. M. Bisgaard and P. Ressel: Unique disintegration of arbitrary positive definite functions on $*$-divisible semigroups. Math.  Z. 200 (1989), 511–525. DOI 10.1007/BF01160953 | MR 0987584
[5] J. Friedrich: A note on the two-dimensional moment problem. Math. Nachr. 121 (1985), 285–286. DOI 10.1002/mana.19851210118 | MR 0809325 | Zbl 0578.44006
[6] H. L. Hamburger: Über eine Erweiterung des Stieltjesschen Momentenproblemes. Math. Ann. 81, 82 (1920, 1921), 235–319, 120–164, 168–187.
[7] Y. Nakamura and N.  Sakakibara: Perfectness of certain subsemigroups of a perfect semigroup. Math. Ann. 287 (1990), 213–220. DOI 10.1007/BF01446888 | MR 1054564
[8] K. Schmüdgen: An example of a positive polynomial which is not a sum of squares of polynomials. A positive, but not strongly positive functional. Math. Nachr. 88 (1979), 385–390. DOI 10.1002/mana.19790880130 | MR 0543417
Partner of
EuDML logo