Article
Keywords:
double sequence; positive definite; moment sequence
Summary:
The first explicit example of a positive semidefinite double sequence which is not a moment sequence was given by Friedrich. We present an example with a simpler definition and more moderate growth as $(m, n) \rightarrow \infty $.
References:
[1] C. Berg, J. P. R. Christensen and C. U. Jensen:
A remark on the multidimensional moment problem. Math. Ann. 243 (1979), 163–169.
DOI 10.1007/BF01420423 |
MR 0543726
[2] C. Berg, J. P. R. Christensen and P. Ressel:
Harmonic Analysis on Semigroups. Springer-Verlag, Berlin, 1984.
MR 0747302
[4] T. M. Bisgaard and P. Ressel:
Unique disintegration of arbitrary positive definite functions on $*$-divisible semigroups. Math. Z. 200 (1989), 511–525.
DOI 10.1007/BF01160953 |
MR 0987584
[6] H. L. Hamburger: Über eine Erweiterung des Stieltjesschen Momentenproblemes. Math. Ann. 81, 82 (1920, 1921), 235–319, 120–164, 168–187.
[7] Y. Nakamura and N. Sakakibara:
Perfectness of certain subsemigroups of a perfect semigroup. Math. Ann. 287 (1990), 213–220.
DOI 10.1007/BF01446888 |
MR 1054564
[8] K. Schmüdgen:
An example of a positive polynomial which is not a sum of squares of polynomials. A positive, but not strongly positive functional. Math. Nachr. 88 (1979), 385–390.
DOI 10.1002/mana.19790880130 |
MR 0543417