Previous |  Up |  Next

Article

Keywords:
$\pi $-domain; almost $\pi $-domain; $\pi $-ring; $d$-prime element
Summary:
In this paper we establish some conditions for an almost $\pi $-domain to be a $\pi $-domain. Next $\pi $-lattices satisfying the union condition on primes are characterized. Using these results, some new characterizations are given for $\pi $-rings.
References:
[1] F.  Alarcon, D. D.  Anderson and C.  Jayaram: Some results on abstract commutative ideal theory. Period. Math. Hungar. 30 (1995), 1–26. DOI 10.1007/BF01876923 | MR 1318850
[2] D. D.  Anderson: Abstract commutative ideal theory without chain condition. Algebra Universalis 6 (1976), 131–145. DOI 10.1007/BF02485825 | MR 0419310 | Zbl 0355.06022
[3] D. D.  Anderson, C.  Jayaram and P. A.  Phiri: Baer lattices. Acta. Sci. Math. (Szeged) 59 (1994), 61–74. MR 1285430
[4] D. D.  Anderson and C.  Jayaram: Principal element lattices. Czechoslovak Math. J. 46(121) (1996), 99–109. MR 1371692
[5] D. D.  Anderson and E. W.  Johnson: Dilworth’s principal elements. Algebra Universalis 36 (1996), 392–404. DOI 10.1007/BF01236764 | MR 1408734
[6] R. P.  Dilworth: Abstract commutative ideal theory. Pacific J. Math. 12 (1962), 481–498. DOI 10.2140/pjm.1962.12.481 | MR 0143781 | Zbl 0111.04104
[7] R. W.  Gilmer: Multiplicative Ideal Theory. Marcel Dekker, New York, 1972. MR 0427289 | Zbl 0248.13001
[8] W.  Heinzer and D.  Lantz: The Laskerian property in commutative rings. J. Algebra 72 (1981), 101–114. DOI 10.1016/0021-8693(81)90313-6 | MR 0634618
[9] C.  Jayaram and E. W.  Johnson: Almost principal element lattices. Internat. J. Math. Math. Sci. 18 (1995), 535–538. DOI 10.1155/S0161171295000676 | MR 1331954
[10] C.  Jayaram and E. W.  Johnson: Some results on almost principal element lattices. Period. Math. Hungar. 31 (1995), 33–42. DOI 10.1007/BF01876351 | MR 1349291
[11] C.  Jayaram and E. W.  Johnson: $s$-prime elements in multiplicative lattices. Period. Math. Hungar. 31 (1995), 201–208. DOI 10.1007/BF01882195 | MR 1610262
[12] C.  Jayaram and E. W.  Johnson: Dedekind lattices. Acta. Sci. Math. (Szeged) 63 (1997), 367–378. MR 1480486
[13] C.  Jayaram and E. W.  Johnson: $\sigma $-elements in multiplicative lattices. Czechoslovak Math.  J. 48(123) (1998), 641–651. DOI 10.1023/A:1022475220032 | MR 1658225
[14] B. G.  Kang: On the converse of a well known fact about Krull donains. J. Algebra 124 (1989), 284–299. DOI 10.1016/0021-8693(89)90131-2 | MR 1011595
[15] M. D.  Larsen and P. J.  McCarthy: Multiplicative Theory of Ideals. Academic Press, New York, 1971. MR 0414528
[16] K. B.  Levitz: A characterization of general ZPI-rings. Proc. Amer. Math. Soc. 32 (1972), 376–380. MR 0294312
[17] P. J.  McCarthy: Principal elements of lattices of ideals. Proc. Amer. Math. Soc. 30 (1971), 43–45. DOI 10.1090/S0002-9939-1971-0279080-4 | MR 0279080 | Zbl 0218.13001
[18] N. K.  Thakare, C. S.  Manjarekar and S.  Maeda: Abstract spectral theory. II.  Minimal characters and minimal spectrums of multiplicative lattices. Acta. Sci. Math. (Szeged) 52 (1988), 53–67. MR 0957788
Partner of
EuDML logo