Article
Keywords:
complete vertex colouring; achromatic number; Cartesian product; complete graph
Summary:
The achromatic number of a graph $G$ is the maximum number of colours in a proper vertex colouring of $G$ such that for any two distinct colours there is an edge of $G$ incident with vertices of those two colours. We determine the achromatic number of the Cartesian product of $K_5$ and $K_n$ for all $n \le 24$.
References:
[1] A. Bouchet:
Indice achromatique des graphes multiparti complets et réguliers. Cahiers Centre Études Rech. Opér. 20 (1978), 331–340.
MR 0543176 |
Zbl 0404.05026
[2] N. P. Chiang and H. L. Fu:
On the achromatic number of the Cartesian product $G_1\times G_2$. Australas. J. Combin. 6 (1992), 111–117.
MR 1196112
[4] K. Edwards:
The harmonious chromatic number and the achromatic number. In: Surveys in Combinatorics 1997. London Math. Soc. Lect. Notes Series 241, R. A. Bailey (ed.), Cambridge University Press, 1997, pp. 13–47.
MR 1477743 |
Zbl 0882.05062
[5] F. Harary, S. Hedetniemi and G. Prins:
An interpolation theorem for graphical homomorphisms. Portug. Math. 26 (1967), 454–462.
MR 0272662
[7] M. Horňák and J. Puntigán:
On the achromatic number of $K_m\times K_n$. In: Graphs and Other Combinatorial Topics. Proceedings of the Third Czechoslovak Symposium on Graph Theory, Prague, August 24–27, 1982, M. Fiedler (ed.), Teubner, Leipzig, 1983, pp. 118–123.
MR 0737024