Previous |  Up |  Next

Article

Keywords:
Prüfer domains; localization; noncommutative Prüfer rings; involution
Summary:
The concept of a Prüfer ring is studied in the case of rings with involution such that it coincides with the corresponding notion in the case of commutative rings.
References:
[1] R. Wiegandt: On the structure of involution rings with chain conditions. Vietnam J.  Math. 21 (1993), 1–12. MR 1367460
[2] N. I.  Dubrovin: Noncommutative Prüfer rings. Math. USSR Sbornik 74 (1993), 1–8. DOI 10.1070/SM1993v074n01ABEH003330 | MR 1133567
[3] M.  Domokos: Goldie’s theorems for involution rings. Comm. Algebra 22 (1994), 371–380. DOI 10.1080/00927879408824854 | MR 1255872 | Zbl 0810.16034
[4] I. M.  Idris: Rings with involution and orderings. J.  Egyptian Math. Soc. 7 (1999), 167–176. MR 1722062 | Zbl 0947.16022
[5] M. D.  Larsen and P. Mc.  Carthy: Multiplicative Theory of Ideals. Academic Press, New York-London, 1971. MR 0414528
[6] I. M.  Idris: Prüfer rings in *-division rings. Arabian J.  Sci. Engrg. 25 (2000), 165–171. MR 1829227
[7] A. W.  Goldie: The structure of Noetherian rings. Lecture Notes in Math., Vol.  246, Springer-Verlag, 1972, pp. 214–321. MR 0393118 | Zbl 0237.16004
Partner of
EuDML logo