Previous |  Up |  Next

Article

Keywords:
metric spaces; $g$-metrizable spaces; 1-sequence-covering mappings; $\sigma $-mappings; quotient mappings
Summary:
In this paper, the relationships between metric spaces and $g$-metrizable spaces are established in terms of certain quotient mappings, which is an answer to Alexandroff’s problems.
References:
[1] P. Alexandroff: On some results concerning topological spaces and their continuous mappings. In: Proc. Symp. Gen. Top. (Prague, 1961), 1961, pp. 41–54. MR 0145472
[2] F. Siwiec: On defining a space by a weak base. Pacific J.  Math. 52 (1974), 233–245. DOI 10.2140/pjm.1974.52.233 | MR 0350706 | Zbl 0285.54022
[3] Shou Lin: On sequence-covering $s$-mappings. Adv. Math. (China) 25 (1996), 548–551. MR 1453163
[4] Shou Lin: $\sigma $-mappings and Alexandroff’s problems. (to appear).
[5] J. R. Boone and F. Siwiec: Sequentially quotient mappings. Czechoslovak Math.  J. 26 (1976), 174–182. MR 0402689
[6] R. Engelking: General Topology. Polish Scientific Publishers, Warszawa, 1977. MR 0500780 | Zbl 0373.54002
[7] A. V. Arhangel’skii: Mappings and spaces. Russian Math. Surveys 21 (1966), 115–162. MR 0227950
[8] Y. Tanaka: $\sigma $-hereditarily closure-preserving $k$-networks and $g$-metrizability. Proc. Amer. Math. Soc. 112 (1991), 283–290. MR 1049850 | Zbl 0770.54031
Partner of
EuDML logo