Previous |  Up |  Next

Article

Keywords:
linear differential equation; quasi-derivative; monotone solution; Kneser solution; oscillatory solution
Summary:
The paper deals with oscillation criteria of fourth order linear differential equations with quasi-derivatives.
References:
[1] J. W. Heidel: Qualitative behavior of solutions of a third order nonlinear differential equation. Pacific. J. Math. 27 (1968), 507–526. DOI 10.2140/pjm.1968.27.507 | MR 0240389 | Zbl 0172.11703
[2] A. Yu.  Levin: Nonoscillation of solutions of the equation $x^{(n)}+p_1(t)x^{(n-1)} + \dots +p_n(t)x=0$. Uspekhi mat. nauk, XXIV 2(146) (1969), 43–96. (Russian)
[3] O. Palumbíny: On existence of oscillatory solutions of third-order linear differential equations. Acta Fac. Paed. Univ. Tyrnaviensis, Ser.  B, No.  1 (1997), 105–112.
[4] O. Palumbíny: On oscillatory solutions of fourth order ordinary differential equations. Czechoslovak Math. J.  49(124) (1999), 779–790. DOI 10.1023/A:1022401101007 | MR 1746703
[5] J.  Regenda: Oscillation criteria for fourth-order linear differential equations. Math. Slovaca 29 (1979), 3–16. MR 0561771 | Zbl 0408.34032
[6] J. Regenda: A note on oscillation and nonoscillation criteria for fourth order linear differential equations. Math. Slovaca 33 (1983), 297–302. MR 0713952 | Zbl 0539.34022
[7] M. Tóthová and O.  Palumbíny: On monotone solutions of the fourth order ordinary differential equations. Czechoslovak Math.  J. 45(120) (1995), 737–746. MR 1354930
Partner of
EuDML logo