Previous |  Up |  Next

Article

Keywords:
$MV$-algebra; abelian lattice ordered group; free generators
Summary:
In the present paper we show that free $MV$-algebras can be constructed by applying free abelian lattice ordered groups.
References:
[1] G. Birkhoff: Lattice Theory. Providence, 1967. MR 0227053 | Zbl 0153.02501
[2] R.  Cignoli, I M. I.  d’Ottaviano and D.  Mundici: Algebraic Foundations of Many-Valued Reasoning. Trends in Logic, Studia logica library Vol.  7, Kluwer Academic Publishers, Dordrecht, 2000. MR 1786097
[3] P.  Conrad: Lattice Ordered Groups. Tulane University, 1970. Zbl 0258.06011
[4] D.  Gluschankof: Cyclic ordered groups and $MV$-algebras. Czechoslovak Math.  J. 43 (1993), 249–263. MR 1211747 | Zbl 0795.06015
[5] J.  Jakubík: Direct product decompositions of $MV$-algebras. Czechoslovak Math.  J. 44 (1994), 725–739.
[6] R.  McNaughton: A theorem about infinite valued sentential logic. J.  Symbolic Logic 16 (1951), 1–13. DOI 10.2307/2268660 | MR 0041799 | Zbl 0043.00901
[7] D.  Mundici: Interpretation of $AFC^*$-algebras in Łukasiewicz sentential calculus. J. Funct. Anal. 65 (1986), 15–63. DOI 10.1016/0022-1236(86)90015-7 | MR 0819173
[8] E. C.  Weinberg: Free lattice ordered abelian groups. Math. Ann. 151 (1963), 187–199. DOI 10.1007/BF01398232 | MR 0153759 | Zbl 0114.25801
[9] E. C.  Weinberg: Free lattice ordered abelian groups,  II. Math. Ann. 159 (1965), 217–222. DOI 10.1007/BF01362439 | MR 0181668 | Zbl 0138.26201
Partner of
EuDML logo