Previous |  Up |  Next

Article

Keywords:
Seiberg-Witten invariant; geography of symplectic 4-manifold
Summary:
By using the Seiberg-Witten invariant we show that the region under the Noether line in the lattice domain $\mathbb{Z}\times \mathbb{Z}$ is covered by minimal, simply connected, symplectic 4-manifolds.
References:
[1] D.  Auckly: Surgery, knots and the Seiberg-Witten equations. Preprint.
[2] D.  Auckly: Homotopy K3 surfaces and gluing results in Seiberg-Witten theory. Preprint. MR 1437600 | Zbl 0870.57022
[3] W. Barth, C. Peter and A. Van de Ven: Compact Complex Surfaces. Ergebnisse der Mathematik. Springer-Verlag, Berlin, 1984. MR 0749574
[4] M. S. Cho and Y. S. Cho: Genus minimizing in symplectic 4-manifolds. Chinese Ann. Math. Ser. B 21 (2000), 115–120. DOI 10.1142/S0252959900000157 | MR 1762280
[5] Y. S. Cho: Finite group actions on the moduli space of self-dual connections  I. Trans. Amer. Math. Soc. 323 (1991), 233–261. DOI 10.1090/S0002-9947-1991-1010409-2 | MR 1010409 | Zbl 0724.57013
[6] Y. S. Cho: Cyclic group actions in gauge theory. Differential Geom. Appl. 6 (1996), 87–99. DOI 10.1016/0926-2245(96)00009-5 | MR 1384881
[7] Y. S. Cho: Seiberg-Witten invariants on non-symplectic 4-manifolds. Osaka J.  Math. 34 (1997), 169–173. MR 1439004 | Zbl 0882.57013
[8] Y. S. Cho: Finite group actions and Gromov-Witten invariants. Preprint.
[9] R.  Fintushel and R.  Stern: Surgery in cusp neighborhoods and the geography of Irreducible 4-manifolds. Invent. Math. 117 (1994), 455–523. DOI 10.1007/BF01232253 | MR 1283727
[10] R.  Fintushel and R.  Stern: Rational blowdowns of smooth 4-manifolds. Preprint. MR 1484044
[11] R. Gompf: A new construction of symplectic manifolds. Ann. Math. 142 (1995), 527–595. DOI 10.2307/2118554 | MR 1356781 | Zbl 0849.53027
[12] P. Kronheimer and T. Mrowka: The genus of embedded surfaces in the projective plane. Math. Res. Lett. (1994), 794–808. MR 1306022
[13] U. Persson: Chern invariants of surfaces of general type. Composito Math. 43 (1981), 3–58. MR 0631426 | Zbl 0479.14018
[14] D. Salamon: Spin geometry and Seiberg-Witten invariants. University of Warwick (1995).
[15] A. Stipsicz: A note on the geography of symplectic manifolds. Preprint. Zbl 0876.57039
[16] C. H. Taubes: The Seiberg-Witten invariants and symplectic forms. Math. Res. Lett. 1 (1994), 809–822. DOI 10.4310/MRL.1994.v1.n6.a15 | MR 1306023 | Zbl 0853.57019
Partner of
EuDML logo