[2] G. Birkhoff:
Lattice Theory, 3rd ed. AMS Colloq. Publ., vol. XXV. Providence, Rhode Island, 1967.
MR 0227053
[5] C. C. Chang:
A new proof of completeness of the Łukasiewicz axioms. Trans. Amer. Math. Soc. 93 (1959), 74–90.
MR 0122718
[6] R. Cignoli, I. M. L. D’Ottaviano and D. Mundici:
Algebraic Foundations of Many-valued Reasoning. Kluwer, Dordrecht, 1999.
MR 1786097
[7] R. Cignoli, F. Esteva, L. Godo and A. Torrens:
Basic fuzzy logic is the logic of continuous $t$-norms and their residua. Soft Computing 4 (2000), 106–112.
DOI 10.1007/s005000000044
[8] B. Csákány:
Characterizations of regular varieties. Acta Sci. Math. (Szeged) 31 (1970), 187–189.
MR 0272697
[10] K. Fichtner:
Eine Bemerkung über Mannigfaltigkeiten universeller Algebren mit Idealen. Monatsb. Deutsch. Akad. Wiss. Berlin 12 (1970), 21–25.
MR 0256968 |
Zbl 0198.33601
[11] J. Font, A. Rodriguez and A. Torrens:
Wajsberg algebras. Stochastica 8 (1984), 5–31.
MR 0780136
[13] G. Grätzer: Two Mal’cev-type theorems in universal algebra. J. Comb. Theory 8 (1970), 334–342.
[14] P. Hájek:
Metamathematics of Fuzzy Logic. Kluwer, Dordrecht, 1998.
MR 1900263
[15] U. Höhle: Commutative residuated monoids. In: Non-classical logics and their applications to fuzzy subsets, U. Höhle, E. P. Klement (eds.), Kluwer, Dordrecht, 1995.
[17] B. Jónsson: On the representation of lattices. Math. Scand. 2 (1953), 295–314.
[18] A. I. Mal’cev: On the general theory of algebraic systems. Matem. Sbornik 35 (1954), 3–20. (Russian)
[19] V. Novák, I. Perfilieva and J. Močkoř:
Mathematical Principles of Fuzzy Logic. Kluwer, Dordrecht, 1999.
MR 1733839
[20] J. Pavelka:
On fuzzy logic I, II, III. Zeit. Math. Log. Grungl. Math. 25 (1979), 45–52, 119–134, 447–464.
MR 0524558
[22] R. Wille:
Kongruenzklassengeometrien. Lecture Notes in Math. Springer-Verlag, Berlin-Heidelberg-New York, 1970.
MR 0262149