Previous |  Up |  Next

Article

Keywords:
residuated lattice; fuzzy logic; variety; congruence
Summary:
We investigate some (universal algebraic) properties of residuated lattices—algebras which play the role of structures of truth values of various systems of fuzzy logic.
References:
[1] R. Bělohlávek: On the regularity of MV-algebras and Wajsberg hoops. Algebra Universalis 44 (2000), 375–377. DOI 10.1007/s000120050194 | MR 1816031
[2] G. Birkhoff: Lattice Theory, 3rd ed. AMS Colloq. Publ., vol. XXV. Providence, Rhode Island, 1967. MR 0227053
[3] I. Chajda: Locally regular varieties. Acta Sci. Math. (Szeged) 64 (1998), 431–435. MR 1666006 | Zbl 0913.08006
[4] C. C. Chang: Algebraic analysis of many-valued logics. Trans. Amer. Math. Soc. 88 (1958), 467–490. DOI 10.1090/S0002-9947-1958-0094302-9 | MR 0094302 | Zbl 0084.00704
[5] C. C. Chang: A new proof of completeness of the Łukasiewicz axioms. Trans. Amer. Math. Soc. 93 (1959), 74–90. MR 0122718
[6] R. Cignoli, I. M. L. D’Ottaviano and D. Mundici: Algebraic Foundations of Many-valued Reasoning. Kluwer, Dordrecht, 1999. MR 1786097
[7] R. Cignoli, F. Esteva, L. Godo and A. Torrens: Basic fuzzy logic is the logic of continuous $t$-norms and their residua. Soft Computing 4 (2000), 106–112. DOI 10.1007/s005000000044
[8] B. Csákány: Characterizations of regular varieties. Acta Sci. Math. (Szeged) 31 (1970), 187–189. MR 0272697
[9] R. P. Dilworth and M. Ward: Residuated lattices. Trans.  Amer. Math. Soc. 45 (1939), 335–354. DOI 10.1090/S0002-9947-1939-1501995-3 | MR 1501995
[10] K. Fichtner: Eine Bemerkung über Mannigfaltigkeiten universeller Algebren mit Idealen. Monatsb. Deutsch. Akad. Wiss. Berlin 12 (1970), 21–25. MR 0256968 | Zbl 0198.33601
[11] J. Font, A. Rodriguez and A. Torrens: Wajsberg algebras. Stochastica 8 (1984), 5–31. MR 0780136
[12] J. A. Goguen: The logic of inexact concepts. Synthese 19 (1968–69), 325–373. DOI 10.1007/BF00485654
[13] G. Grätzer: Two Mal’cev-type theorems in universal algebra. J. Comb. Theory 8 (1970), 334–342.
[14] P. Hájek: Metamathematics of Fuzzy Logic. Kluwer, Dordrecht, 1998. MR 1900263
[15] U. Höhle: Commutative residuated monoids. In: Non-classical logics and their applications to fuzzy subsets, U. Höhle, E. P. Klement (eds.), Kluwer, Dordrecht, 1995.
[16] U. Höhle: On the fundamentals of fuzzy set theory. J.  Math. Anal. Appl. 201 (1996), 786–826. DOI 10.1006/jmaa.1996.0285 | MR 1400564
[17] B. Jónsson: On the representation of lattices. Math. Scand. 2 (1953), 295–314.
[18] A. I. Mal’cev: On the general theory of algebraic systems. Matem. Sbornik 35 (1954), 3–20. (Russian)
[19] V. Novák, I. Perfilieva and J. Močkoř: Mathematical Principles of Fuzzy Logic. Kluwer, Dordrecht, 1999. MR 1733839
[20] J. Pavelka: On fuzzy logic  I, II, III. Zeit. Math. Log. Grungl. Math. 25 (1979), 45–52, 119–134, 447–464. MR 0524558
[21] A. Ursini: On subtractive varieties  I. Algebra Universalis 31 (1994), 204–222. DOI 10.1007/BF01236518 | MR 1259350 | Zbl 0799.08010
[22] R. Wille: Kongruenzklassengeometrien. Lecture Notes in Math. Springer-Verlag, Berlin-Heidelberg-New York, 1970. MR 0262149
Partner of
EuDML logo