[1] H. Berens and A. DeVore:
Quantitative Korovkin theorems for positive linear operators in $L_p$ space. Trans. Amer. Math. Soc. 245 (1978), 349–361.
MR 0511414
[4] V. K. Dzyadik:
On the approximation of functions by linear positive operators and singular integrals. Mat. Sbornik 70 (1966), 508–517. (Russian)
MR 0208243
[5] A. D. Gadziev:
The convergence problem for a sequence of positive linear operators on unbounded sets, and Theorems analogous to that of P. P. Korovkin. Dokl. Akad. Nauk SSSR 218, no. 5.
MR 0367522 |
Zbl 0312.41013
[6] A. D. Gadjiev: On P. P. Korovkin type theorems. Math. Zametki, Vol. 20 (1976). (Russian)
[7] N. B. Haaser and J. A. Sullivan:
Real Analysis. Dover Publications, INC, New York, 1991.
MR 1088254
[9] A. Kufner, O. John and S. Fučík:
Function Spaces. Academia, Prague, 1977.
MR 0482102
[12] J. J. Swetits and B. Wood:
On degree of $L_p$-approximation with positive linear operators. J. Approx. Theory 87 (1996), 239–241.
MR 1418496