Article
Keywords:
lattice ordered group; orthogonal $\sigma $-completeness; direct factor
Summary:
In this paper we prove a theorem of Cantor-Bernstein type for orthogonally $\sigma $-complete lattice ordered groups.
References:
[2] J. Jakubík:
Cantor-Bernstein theorem for lattice ordered groups. Czechoslovak Math. J. 22(97) (1972), 159–175.
MR 0297666
[3] J. Jakubík:
On complete lattice ordered groups with strong units. Czechoslovak Math. J. 46(121) (1996), 221–230.
MR 1388611
[5] J. Jakubík:
Convex isomorphisms of archimedean lattice ordered groups. Mathware Soft Comput. 5 (1998), 49–56.
MR 1632739
[6] R. Sikorski:
A generalization of theorem of Banach and Cantor-Bernstein. Coll. Mat. 1 (1948), 140–144.
MR 0027264
[8] F. Šik: To the theory of lattice ordered groups. Czechoslovak Math. J. 6(81) (1956), 1–25. (Russian)
[9] A. De Simone, D. Mundici and M. Navara: A Cantor-Bernstein theorem for $\sigma $-complete $MV$-algebras. (Preprint).