Previous |  Up |  Next

Article

Keywords:
nonlinear difference equation; global attractivity; oscillation
Summary:
The authors consider the nonlinear difference equation \[ x_{n+1}=\alpha x_n + x_{n-k}f(x_{n-k}), \quad n=0, 1,\dots .1 \text{where} \alpha \in (0, 1),\hspace{5.0pt}k \in \lbrace 0, 1, \dots \rbrace \hspace{5.0pt}\text{and}\hspace{5.0pt}f\in C^1[[0, \infty ),[0, \infty )] \qquad \mathrm{(0)}\] with $f^{\prime }(x)<0$. They give sufficient conditions for the unique positive equilibrium of (0.1) to be a global attractor of all positive solutions. The results here are somewhat easier to apply than those of other authors. An application to a model of blood cell production is given.
References:
[1] J. R. Graef and C.  Qian: Global stability in a nonlinear difference equation. J.  Differ. Equations Appl. 5 (1999), 251–270. DOI 10.1080/10236199908808186 | MR 1697059
[2] A. F. Ivanov: On global stability in a nonlinear discrete model. Nonlinear Anal. 23 (1994), 1383–1389. DOI 10.1016/0362-546X(94)90133-3 | MR 1306677 | Zbl 0842.39005
[3] G. Karakostas, Ch. G. Philos and Y. G. Sficas: The dynamics of some discrete population models. Nonlinear Anal. 17 (1991), 1069–1084. DOI 10.1016/0362-546X(91)90192-4 | MR 1136230
[4] V. L. Kocic and G. Ladas: Global Behavior of Nonlinear Difference Equations of Higher Order with Applications. Kluwer Academic Publishers, Dordrecht, 1993. MR 1247956
[5] M. C. Mackey and L. Glass: Oscillation and chaos in physiological control systems. Science 197 (1977), 287–289. DOI 10.1126/science.267326
Partner of
EuDML logo