Previous |  Up |  Next

Article

Keywords:
$MV$-algebra; duality; interval; autometrization; 2-periodic isometry
Summary:
Let Int $\mathcal A$ be the lattice of all intervals of an $MV$-algebra $\mathcal A$. In the present paper we investigate the relations between direct product decompositions of $\mathcal A$ and (i) the lattice Int $\mathcal A$, or (ii) 2-periodic isometries on $\mathcal A$, respectively.
References:
[1] G.  Birkhoff: Lattice Theory. AMS Colloquium Publications. Vol. XXV, Providence, RI, 1967. MR 0227053 | Zbl 0153.02501
[2] G.  Cattaneo and F.  Lombardo: Independent axiomatization of $MV$-algebras. Tatra Mt. Math. Publ. 15 (1998), 227–232. MR 1655091
[3] C. C.  Chang: Algebraic analysis of many valued logics. Trans. Amer. Math. Soc. 88 (1958), 467–490. DOI 10.1090/S0002-9947-1958-0094302-9 | MR 0094302 | Zbl 0084.00704
[4] P.  Conrad: Lattice Ordered Groups. Tulane University, New Orleans, 1970. Zbl 0258.06011
[5] D.  Glushankof: Cyclic ordered groups and $MV$-algebras. Czechoslovak Math.  J. 44(119) (1994), 725–739.
[6] Ch.  Holland: Intrinsic metrics for lattice ordered groups. Algebra Universalis 19 (1984), 142–150. DOI 10.1007/BF01190425 | MR 0758313 | Zbl 0557.06011
[7] J.  Jakubík: Isometries of lattice ordered groups. Czechoslovak Math.  J. 30(105) (1980), 142–152. MR 0565917
[8] J.  Jakubík: Direct product decompositions of $MV$-algebras. Czechoslovak Math.  J. 44(119) (1994), 725–739. MR 1295146
[9] J.  Jakubík and M.  Kolibiar: On some properties of pairs of lattices. Czechoslovak Math.  J. 4(79) (1954), 1–27. (Russian) MR 0065529
[10] M.  Jasem: Weak isometries and direct decompositions of dually residuated lattice ordered semigroups. Math. Slovaca 43 (1993), 119–136. MR 1274597 | Zbl 0782.06012
[11] J.  Lihová: Posets having a selfdual interval poset. Czechoslovak Math.  J. 44(119) (1994), 523–533. MR 1288170
[12] P.  Mangani: On certain algebras related to many-valued logics. Boll. Un. Mat. Ital. 8 (1973), 68–78. (Italian)
[13] D.  Mundici: Interpretation of $AFC^*$-algebras in Łukasiewicz sentential calculus. J.  Funct. Anal. 65 (1986), 15–63. DOI 10.1016/0022-1236(86)90015-7 | MR 0819173
[14] W. B.  Powell: On isometries in abelian lattice ordered groups. J.  Indian Math. Soc. 46 (1982), 189–194. MR 0878072
[15] J.  Rachůnek: Isometries in ordered groups. Czechoslovak Math.  J. 34(109) (1984), 334–341. MR 0743498
[16] K. L.  Swamy: Isometries in autometrized lattice ordered groups. Algebra Universalis 8 (1977), 58–64. MR 0463074 | Zbl 0457.06015
[17] K. L.  Swamy: Isometries in autometrized lattice ordered groups  II. Math. Seminar Notes, Kobe Univ. 5 (1977), 211–214. MR 0463075 | Zbl 0457.06015
Partner of
EuDML logo