[1] G. Birkhoff:
Lattice Theory. AMS Colloquium Publications. Vol. XXV, Providence, RI, 1967.
MR 0227053 |
Zbl 0153.02501
[2] G. Cattaneo and F. Lombardo:
Independent axiomatization of $MV$-algebras. Tatra Mt. Math. Publ. 15 (1998), 227–232.
MR 1655091
[4] P. Conrad:
Lattice Ordered Groups. Tulane University, New Orleans, 1970.
Zbl 0258.06011
[5] D. Glushankof: Cyclic ordered groups and $MV$-algebras. Czechoslovak Math. J. 44(119) (1994), 725–739.
[7] J. Jakubík:
Isometries of lattice ordered groups. Czechoslovak Math. J. 30(105) (1980), 142–152.
MR 0565917
[8] J. Jakubík:
Direct product decompositions of $MV$-algebras. Czechoslovak Math. J. 44(119) (1994), 725–739.
MR 1295146
[9] J. Jakubík and M. Kolibiar:
On some properties of pairs of lattices. Czechoslovak Math. J. 4(79) (1954), 1–27. (Russian)
MR 0065529
[10] M. Jasem:
Weak isometries and direct decompositions of dually residuated lattice ordered semigroups. Math. Slovaca 43 (1993), 119–136.
MR 1274597 |
Zbl 0782.06012
[11] J. Lihová:
Posets having a selfdual interval poset. Czechoslovak Math. J. 44(119) (1994), 523–533.
MR 1288170
[12] P. Mangani: On certain algebras related to many-valued logics. Boll. Un. Mat. Ital. 8 (1973), 68–78. (Italian)
[14] W. B. Powell:
On isometries in abelian lattice ordered groups. J. Indian Math. Soc. 46 (1982), 189–194.
MR 0878072
[15] J. Rachůnek:
Isometries in ordered groups. Czechoslovak Math. J. 34(109) (1984), 334–341.
MR 0743498
[16] K. L. Swamy:
Isometries in autometrized lattice ordered groups. Algebra Universalis 8 (1977), 58–64.
MR 0463074 |
Zbl 0457.06015
[17] K. L. Swamy:
Isometries in autometrized lattice ordered groups II. Math. Seminar Notes, Kobe Univ. 5 (1977), 211–214.
MR 0463075 |
Zbl 0457.06015