[2] A. Avallone:
Nonatomic vector-valued modular functions. Annal. Soc. Math. Polon. Series I: Comment. Math. XXXIX (1999), 37–50.
MR 1739014 |
Zbl 0987.28012
[3] A. Avallone, G. Barbieri and R. Cilia:
Control and separating points of modular functions. Math. Slovaca 43 (1999), .
MR 1696950
[4] A. Avallone and A. De Simone:
Extensions of modular functions on orthomodular lattices. Italian J. Pure Appl. Math, To appear.
MR 1842373
[5] A. Avallone and M. A. Lepellere:
Modular functions: Uniform boundedness and compactness. Rend. Circ. Mat. Palermo XLVII (1998), 221–264.
MR 1633479
[6] A. Avallone and J. Hamhalter:
Extension theorems (vector measures on quantum logics). Czechoslovak Math. J. 46 (121) (1996), 179–192.
MR 1371699
[8] G. Barbieri and H. Weber:
A topological approach to the study of fuzzy measures. Funct. Anal. Econom. Theory, Springer, 1998, pp. 17–46.
MR 1730117
[9] G. Barbieri, M. A. Lepellere and H. Weber:
The Hahn decomposition theorem and applications. Fuzzy Sets Systems 118 (2001), 519–528.
MR 1809398
[11] M. Benado:
Les ensembles partiellement ordonnes et le theoreme de raffinement de Schrelier II. Czechoslovak Math. J. 5 (1955), 308–344.
MR 0076744
[12] G. Birkhoff:
Lattice Theory, Third edition. AMS Providence, R.I., 1967.
MR 0227053
[13] I. Fleischer and T. Traynor:
Equivalence of group-valued measure on an abstract lattice. Bull. Acad. Pol. Sci. 28 (1980), 549–556.
MR 0628641
[17] J. Jakubík:
Sur les axiomes des multistructures. Czechoslovak Math. J. 6 (1956), 426–430.
MR 0099933
[18] J. Jakubík and M. Kolibiar:
Isometries of multilattice groups. Czechoslovak Math. J. 33 (1983), 602–612.
MR 0721089
[19] J. Lihová:
Valuations and distance function on directed multilattices. Math. Slovaca 46 (1996), 143–155.
MR 1426999
[20] J. Lihová and K. Repasky:
Congruence relations on and varieties of directed multilattices. Math. Slovaca 38 (1988), 105–122.
MR 0945364
[22] H. Weber:
Uniform Lattices I: A generalization of topological Riesz space and topological Boolean rings; Uniform lattices II. Ann. Mat. Pura Appl. 160 (1991), 347–370.
DOI 10.1007/BF01764134 |
MR 1163215
[27] H. Weber:
Two extension theorems. Modular functions on complemented lattices. Preprint.
MR 1885457 |
Zbl 0998.06006