Previous |  Up |  Next

Article

Keywords:
Dedekind domain
Summary:
Butler groups formed by factoring a completely decomposable group by a rank one group have been studied extensively. We call such groups, bracket groups. We study bracket modules over integral domains. In particular, we are interested in when any bracket $R$-module is $R$ tensor a bracket group.
References:
[1] D. A. Arnold: Finite Rank Torsion-Free Abelian Groups and Rings, LNM 931. Springer-Verlag, 1982. MR 0665251
[2] D. M. Arnold and C. I. Vinsonhaler: Finite rank Butler groups, a survey of recent results. In: Abelian Groups. Lecture Notes in Pure and Appl. Math. 146, Marcel Dekker, 1993, pp. 17–42. MR 1217256
[3] U. F. Albrecht and H. P.  Goeters: Butler theory over Murley groups. J. Algebra 200 (1998), 118–133. DOI 10.1006/jabr.1997.7211 | MR 1603266
[4] L. Fuchs and C.  Metelli: On a class of Butler groups. Manuscripta Math. 71 (1991), 1–28. DOI 10.1007/BF02568390 | MR 1094735
[5] H. P. Goeters: An extension of Warfield duality for abelian groups. J.  Algebra 180 (1996), 848–861. DOI 10.1006/jabr.1996.0097 | MR 1379213 | Zbl 0845.20042
[6] H. P.  Goeters and Ch.  Megibben: Quasi-isomorphism invariants and ${\mathbb{Z}}_2$-representations for a class of Butler groups. Rendiconte Sem. Mat. Univ. of Padova (to appear).
[7] H. P. Goeters, W.  Ullery and Ch. Vinsonhaler: Numerical invariants for a class of Butler groups. Contemp. Math. 171 (1994), 159–172. DOI 10.1090/conm/171/01771 | MR 1293140
[8] P. Hill and C.  Megibben: The classification of certain Butler groups. J.  of Algebra 160 (2) (1993), 524–551. DOI 10.1006/jabr.1993.1199 | MR 1244926
[9] W. Y. Lee: Codiagonal Butler groups. Chinese J.  Math. 17 (1989), 259–271. MR 1036105
[10] E. Matlis: Torsion-Free Modules. University of Chicago Press, 1972. MR 0344237 | Zbl 0298.13001
[11] H. Matsumura: Commutative Ring Theory. Cambridge University Press, 1980. MR 0879273
[12] F. Richman: An extension of the theory of completely decomposable torsion-free abelian groups. Trans. Amer. Math. Soc. 279 (1983), 175–185. DOI 10.1090/S0002-9947-1983-0704608-X | MR 0704608 | Zbl 0524.20028
[13] J. J. Rotman: An Introduction to Homological Algebra. Academic Press, 1979. MR 0538169 | Zbl 0441.18018
[14] R. B. Warfield: Homomorphisms and duality for abelian groups. Math. Z. 107 (1968), 189–212. DOI 10.1007/BF01110257 | MR 0237642
Partner of
EuDML logo