Previous |  Up |  Next

Article

Title: On the set of solutions of some nonconvex nonclosed hyperbolic differential inclusions (English)
Author: Cernea, Aurelian
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 52
Issue: 1
Year: 2002
Pages: 215-224
Summary lang: English
.
Category: math
.
Summary: We consider a class of nonconvex and nonclosed hyperbolic differential inclusions and we prove the arcwise connectedness of the solution set. (English)
Keyword: hyperbolic differential inclusions
Keyword: fixed point
Keyword: solution set
MSC: 34A60
MSC: 35B30
MSC: 35L20
MSC: 35L70
MSC: 35R70
idZBL: Zbl 1010.34002
idMR: MR1885466
.
Date available: 2009-09-24T10:50:19Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/127711
.
Reference: [1] F. S. De Blasi and J.  Myjak: On the set of solutions of a differential inclusion.Bull. Inst. Math. Acad. Sinica 14 (1986), 271–275. MR 0866561
Reference: [2] F. S.  De Blasi and J.  Myjak: On the structure of the set of solutions of the Darboux problem of hyperbolic equations.Proc. Edinburgh Math. Soc. 29 (1986), 7–14. MR 0829175
Reference: [3] F. S.  De Blasi, G.  Pianigiani and V.  Staicu: On the solution sets of some nonconvex hyperbolic differential inclusions.Czechoslovak Math.  J. 45 (1995), 107–116. MR 1314533
Reference: [4] L.  Gorniewicz and T.  Pruszko: On the set of solutions of the Darboux problem for some hyperbolic equations.Bull. Acad. Polon. Sci. Math. Astronom. Phys. 38 (1980), 279–285. MR 0620202
Reference: [5] S.  Marano: Generalized solutions of partial differential inclusions depending on a parameter.Rend. Accad. Naz. Sci. Mem. Mat. 107 (1989), 281–295. Zbl 0702.35168, MR 1041756
Reference: [6] S.  Marano: Fixed points of multivalued contractions with nonclosed, nonconvex values.Atti. Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. 5 (1994), 203–212. Zbl 0862.54040, MR 1298263
Reference: [7] S.  Marano and V.  Staicu: On the set of solutions to a class of nonconvex nonclosed differential inclusions.Acta Math. Hungar. 76 (1997), 287–301. MR 1459237, 10.1023/A:1006533606338
Reference: [8] S.  Marano and V. Staicu: Correction to the paper On the set of solutions to a class of nonconvex nonclosed differential inclusions.Acta Math. Hungar. 78 (1998), 267–268. MR 1604707, 10.1023/A:1006539007972
Reference: [9] V.  Staicu: On a non-convex hyperbolic differential inclusion.Proc. Edinburgh Math. Soc. 35 (1992), 375–382. Zbl 0769.34018, MR 1187000
Reference: [10] G.  Teodoru: A characterization of the solutions of the Darboux problem for the equation $u_{xy}\in F(x,y,u)$.An. Stiint. Univ. Al. I. Cuza Iasi Mat. 33 (1987), 33–38. MR 0925687
.

Files

Files Size Format View
CzechMathJ_52-2002-1_16.pdf 335.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo