Previous |  Up |  Next

Article

Keywords:
partial transformation; second centralizer
Summary:
Second centralizers of partial transformations on a finite set are determined. In particular, it is shown that the second centralizer of any partial transformation $\alpha $ consists of partial transformations that are locally powers of $\alpha $.
References:
[1] P. M. Higgins: Techniques of Semigroup Theory. Oxford University Press, New York, 1992. MR 1167445 | Zbl 0744.20046
[2] P. M. Higgins: Digraphs and the semigroup of all functions on a finite set. Glasgow Math.  J. 30 (1988), 41–57. DOI 10.1017/S0017089500007011 | MR 0925558 | Zbl 0634.20034
[3] J. Konieczny: Green’s relations and regularity in centralizers of permutations. Glasgow Math. J. 41 (1999), 45–57. DOI 10.1017/S0017089599970301 | MR 1689659 | Zbl 0924.20049
[4] J. Konieczny and S. Lipscomb: Centralizers in the semigroup of partial transformations. Math.  Japon. 48 (1998), 367–376. MR 1664246
[5] S. Lipscomb: Symmetric Inverse Semigroups. Mathematical Surveys and Monographs, Vol.  46, American Mathematical Society, Providence, RI, 1996. MR 1413301 | Zbl 0857.20047
[6] S. Lipscomb and J. Konieczny: Centralizers of permutations in the partial transformation semigroup. Pure Math. Appl. 6 (1995), 349–354. MR 1399299
[7] V. A. Liskovec and V. Z. Feĭnberg: On the permutability of mappings. Dokl. Akad. Nauk Belarusi 7 (1963), 366–369. (Russian) MR 0153609
Partner of
EuDML logo