[2] Z. Brzeźniak and S. Peszat:
Maximal inequalities and exponential estimates for stochastic convolutions in Banach spaces. Stochastic Processes, Physics and Geometry: New Interplays, I (Leipzig, 1999), Amer. Math. Soc., Providence, 2000, pp. 55–64.
MR 1803378
[3] G. Da Prato, M. Iannelli and L. Tubaro:
Semi-linear stochastic differential equations in Hilbert spaces. Boll. Un. Mat. Ital. A (5) 16 (1979), 168–177.
MR 0530145
[4] G. Da Prato, S. Kwapień and J. Zabczyk:
Regularity of solutions of linear stochastic equations in Hilbert spaces. Stochastics 23 (1987), 1–23.
MR 0920798
[6] G. Da Prato and J. Zabczyk:
Stochastic Equations in Infinite Dimensions. Cambridge University Press, Cambridge, 1992.
MR 1207136
[12] J. Seidler:
Da Prato-Zabczyk’s maximal inequality revisited I. Math. Bohem. 118 (1993), 67–106.
MR 1213834 |
Zbl 0785.35115
[13] J. Seidler and T. Sobukawa: Exponential integrability of stochastic convolutions. Submitted.
[14] B. Sz.-Nagy:
Sur les contractions de l’espace de Hilbert. Acta Sci. Math. Szeged 15 (1953), 87–92.
MR 0058128 |
Zbl 0052.12203
[15] B. Sz.-Nagy:
Transformations de l’espace de Hilbert, fonctions de type positif sur un groupe. Acta Sci. Math. Szeged 15 (1954), 104–114.
MR 0060740
[16] B. Sz.-Nagy and C. Foiaş:
Harmonic Analysis of Operators on Hilbert Space. North-Holland, Amsterdam, 1970.
MR 0275190