Previous |  Up |  Next

Article

Keywords:
infinite-dimensional Wiener process; stochastic convolution; maximal inequality
Summary:
Using unitary dilations we give a very simple proof of the maximal inequality for a stochastic convolution \[ \int ^t_0 S(t-s)\psi (s)\mathrm{d}W(s) \] driven by a Wiener process $W$ in a Hilbert space in the case when the semigroup $S(t)$ is of contraction type.
References:
[1] Z.  Brzeźniak: On stochastic convolution in Banach spaces and applications. Stochastics Stochastics Rep. 61 (1997), 245–295. DOI 10.1080/17442509708834122 | MR 1488138
[2] Z.  Brzeźniak and S.  Peszat: Maximal inequalities and exponential estimates for stochastic convolutions in Banach spaces. Stochastic Processes, Physics and Geometry: New Interplays, I (Leipzig, 1999), Amer.  Math.  Soc., Providence, 2000, pp. 55–64. MR 1803378
[3] G. Da Prato, M.  Iannelli and L.  Tubaro: Semi-linear stochastic differential equations in Hilbert spaces. Boll. Un. Mat. Ital.  A (5) 16 (1979), 168–177. MR 0530145
[4] G. Da Prato, S.  Kwapień and J.  Zabczyk: Regularity of solutions of linear stochastic equations in Hilbert spaces. Stochastics 23 (1987), 1–23. MR 0920798
[5] G. Da Prato and J.  Zabczyk: A note on stochastic convolution. Stochastic Anal. Appl. 10 (1992), 143–153. DOI 10.1080/07362999208809260 | MR 1154532
[6] G.  Da Prato and J.  Zabczyk: Stochastic Equations in Infinite Dimensions. Cambridge University Press, Cambridge, 1992. MR 1207136
[7] E. B.  Davies: Quantum Theory of Open Systems. Academic Press, London, 1976. MR 0489429 | Zbl 0388.46044
[8] D. Gątarek: A note on nonlinear stochastic equations in Hilbert spaces. Statist. Probab. Lett. 17 (1993), 387–394. DOI 10.1016/0167-7152(93)90259-L | MR 1237785
[9] A. Ichikawa: Some inequalities for martingales and stochastic convolutions. Stochastic Anal. Appl. 4 (1986), 329–339. DOI 10.1080/07362998608809094 | MR 0857085 | Zbl 0622.60066
[10] P. Kotelenez: A submartingale type inequality with applications to stochastic evolution equations. Stochastics 8 (1982), 139–151. DOI 10.1080/17442508208833233 | MR 0686575 | Zbl 0495.60066
[11] P. Kotelenez: A stopped Doob inequality for stochastic convolution integrals and stochastic evolution equations. Stochastic Anal. Appl. 2 (1984), 245–265. DOI 10.1080/07362998408809036 | MR 0757338 | Zbl 0552.60058
[12] J. Seidler: Da Prato-Zabczyk’s maximal inequality revisited I. Math. Bohem. 118 (1993), 67–106. MR 1213834 | Zbl 0785.35115
[13] J. Seidler and T. Sobukawa: Exponential integrability of stochastic convolutions. Submitted.
[14] B. Sz.-Nagy: Sur les contractions de l’espace de Hilbert. Acta Sci. Math. Szeged 15 (1953), 87–92. MR 0058128 | Zbl 0052.12203
[15] B. Sz.-Nagy: Transformations de l’espace de Hilbert, fonctions de type positif sur un groupe. Acta Sci. Math. Szeged 15 (1954), 104–114. MR 0060740
[16] B. Sz.-Nagy and C. Foiaş: Harmonic Analysis of Operators on Hilbert Space. North-Holland, Amsterdam, 1970. MR 0275190
[17] L. Tubaro: An estimate of Burkholder type for stochastic processes defined by the stochastic integral. Stochastic Anal. Appl. 2 (1984), 187–192. DOI 10.1080/07362998408809032 | MR 0746435 | Zbl 0539.60056
Partner of
EuDML logo