[4] H. J. Engelbert and V. P. Kurenok:
On one-dimensional stochastic equations driven by symmetric stable processes. Stochastic Processes and Related Topics, Proceedings of the 12th Winter School on Stochastic Processes, Siegmundsburg (Germany), February 27–March 4, 2000, R. Buckdahn, H.-J. Engelbert and M. Yor (eds.), Gordon and Breach Science Publishers, 2001, to appear.
MR 1987311
[5] H. J. Engelbert and V. P. Kurenok:
On one-dimensional stochastic equations driven by symmetric stable processes. Jenaer Schriften zur Mathematik und Informatik, Preprint Mat/Inf/00/14 (24.01.2000).
MR 1987311
[6] H. J. Engelbert and W. Schmidt:
On the behaviour of certain functionals of the Wiener process and applications to stochastic differential equations. Stochastic differential systems (Visegrad, 1980). Lecture Notes in Control and Information Sci. Vol. 36, Springer, Berlin-New York, 1981, pp. 47–55.
MR 0653645
[7] H. J. Engelbert and W. Schmidt:
On one-dimensional stochastic differential equations with generalized drift. Stochastic differential systems (Marseille-Luminy, 1984). Lecture Notes in Control and Information Sci. Vol. 69, Springer, Berlin-New York, 1985, pp. 143–155.
MR 0798317
[8] H. J. Engelbert and W. Schmidt:
On solutions of one-dimensional stochastic differential equations without drift. Z. Wahrsch. Verw. Gebiete 68 (1985), 287–314.
DOI 10.1007/BF00532642 |
MR 0771468
[9] H. J. Engelbert and W. Schmidt:
Strong Markov continuous local martingales and solutions of one-dimensional stochastic differential equations, III. Math. Nachr. 151 (1991), 149–197.
DOI 10.1002/mana.19911510111 |
MR 1121203
[10] A. F. Fillippov: Differential Equations with Discontinuous Right Hand Sides. Nauka, Moscow, 1985. (Russian)
[11] J. Jacod:
Calcul stochastique et problèmes de martingales. Lecture Notes in Math. Vol. 714, Springer, Berlin, 1979.
MR 0542115 |
Zbl 0414.60053
[13] D. Revuz, M. Yor:
Continuous Martingales and Brownian Motion. Springer-Verlag, Berlin, 1994.
MR 1303781
[14] T. Senf: Stochastische Differentialgleichungen mit inhomogenen Koeffizienten. Dissertation, Friedrich-Schiller-Universität Jena. (1992).
[15] T. Senf:
On one-dimensional stochastic differential equations without drift and with time-dependent diffusion coefficients. Stochastics Stochastics Rep. 43 (1993), 199–220.
MR 1277164 |
Zbl 0786.60077
[16] T. Yamada and S. Watanabe:
On the uniqueness of solutions of stochastic differential equations. J. Math. Kyoto Univ. 11 (1971), 155–167.
DOI 10.1215/kjm/1250523691 |
MR 0278420