[2] V. A. Botvinnik: Phragmén-Lindelöf’s theorems for space mappings with boundary distortion. Dissertation, Volgograd (1983), 1–96.
[3] Yu. D. Burago and V. A. Zalgaller:
Geometric Inequalities. Nauka, Moscow, 1980.
MR 0602952
[4] C. Croke:
Some isoperimetric inequalities and eigenvalue estimates. Ann. Sci. École Norm. Sup. (4) Ser. 13 (1980), 419–435.
MR 0608287 |
Zbl 0465.53032
[5] H. Federer:
Geometric Measure Theory. Springer-Verlag, Berlin-Heidelberg-New York, 1969.
MR 0257325 |
Zbl 0176.00801
[8] J. Heinonen, T. Kilpeläinen and O. Martio:
Nonlinear Potential Theory of Degenerate Elliptic Equations. Clarendon Press, 1993.
MR 1207810
[9] D. Hoffman and J. Spruck:
Sobolev and isoperimetric inequalities for Riemannian submanifolds. Comm. Pure Appl. Math. 27 (1974), 715–727.
DOI 10.1002/cpa.3160270601 |
MR 0365424
[10] I. Holopainen and S. Rickman:
Classification of Riemannian manifolds in nonlinear potential theory. Potential Analysis 2 (1993), 37–66.
DOI 10.1007/BF01047672 |
MR 1245236
[11] A. S. Kronrod:
On functions of two variables. Uspekhi Mat. Nauk 5 (1950), 24–134. (Russian)
MR 0034826
[12] O. Martio, V. Miklyukov and M. Vuorinen:
Differential forms and quasiregular mappings on Riemannian manifolds. XVIth Rolf Nevanlinna Colloquium (I. Laine and O. Martio, eds.), Walter de Gruyter &Co, 1996, pp. 151–159.
MR 1427080
[13] O. Martio, V. Miklyukov and M. Vuorinen:
Phragmén – Lindelöf’s principle for quasiregular mappings and isoperimetry. Dokl. Akad. Nauk 347 (1996), 303–305. (Russian)
MR 1393057
[14] V. M. Miklyukov:
Asymptotic properties of subsolutions of quasilinear equations of elliptic type and mappings with bounded distortion. Mat. Sb. 11 (1980), 42–66. (Russian)
MR 0560463
[15] P. Pansu:
Quasiconformal mappings and manifolds of negative curvature. Curvature and Topology of Riemannian Manifolds. Proceed. 17th Int. Taniguchi Symp., Katata, Japan, Aug. 26-31, 1985.
MR 0859587 |
Zbl 0592.53031
[16] E. Phragmén and E. Lindelöf:
Sur une extension d’un principe classique de l’analyse et sur quelques propriétés des fonctions monogenènes dans le voisinage d’un point singulier. Acta Math. 31 (1908), 381–406.
DOI 10.1007/BF02415450 |
MR 1555044
[18] M. Vuorinen:
Conformal Geometry and Quasiregular Mappings. Lecture Notes in Math., 1319, Springer-Verlag.
MR 0950174 |
Zbl 0646.30025