[1] Z. Arststein:
Weak convergence of set valued functions and control. SIAM, J. Control Optim. 13 (1975), 865–878.
DOI 10.1137/0313052 |
MR 0377661
[2] I.Assani and A. Klei:
Parties décomposables compactes de $L_E^1$. C. R. Acad. Sci. Paris, Ser. I 294 (1982), 533–536.
MR 0679937
[4] C. Castaing:
Weak compactness criteria in set valued integration. Laboratorie d’Analyse convex, prepublication 1995/03.
Zbl 0918.28014
[5] C. Castaing and P. Clauzure:
Compacite faible dans lespace des multifuntions integrablements bornees et minimizations. Ann. Mat. Pura Appl. (IV) 140 (1985), 345–364.
MR 0807644
[6] C. Castaing and M. Valadier:
Convex Analysis and Measurable Multifunctions. LNM 586, Springer Verlag, Berlin, 1977.
MR 0467310
[9] J. Diestel, J. J. Uhl:
Vector measures. Amer. Math. Soc. Surveys vol. 15, Providence, R.I., 1977.
MR 0453964
[10] C. Godet Thobie:
Some results about multimeasures and their selectors. Measure Theory, D. Kölzow (ed.), LNM 794, Springer-Verlag, Berlin, 1980, pp. 112–116.
MR 0577965 |
Zbl 0432.28009
[11] N. Ghoussoub and P. Saab:
Weak compactness in spaces of Bochner integrable functions and the Radon-Nikodym property. Pacific J. Math. 110 (1984), 65–70.
DOI 10.2140/pjm.1984.110.65 |
MR 0722738
[14] H. A. Klein: A compactness criteria in $L^1(E)$ and Radon-Nikodym theorems for multimeasures. Bull. Soc. Math. 2ê serie 112 (1988), 305–324.
[15] M. Muresan:
On a boundary value problem for quasi-linear differential inclusions of evolution. Collect. Math. 45 (1994), 165–175.
MR 1316934 |
Zbl 0824.34017
[17] N. Papageorgiou:
Boundary value problems for evolution inclusions. Comment. Math. Univ. Carolin. 29 (1988), 355–363.
MR 0957404 |
Zbl 0696.35074
[18] N. Papageorgiou:
Decomponsable sets in the Lebesgue Bochner spaces. Comment. Math. Univ. St. Paul 37 (1988), 49–62.
MR 0942305
[19] N. Papageorgiou:
Radon-Nikodym theorem for multimeasures and transition multimeasures. Proc. Amer. Math. Soc. 111 (1991), 465–474.
MR 1036989
[20] N. Papageorgiou:
On the convergence properties of measurable multifuntions in a Banach space. Math. Japon. 37 (1992), 637–643.
MR 1176035
[23] C. Stegall:
The Radon-Nikodym property in conjugate Banach Spaces II. Trans. Amer. Math. Soc. 264 (1981), 507–519.
MR 0603779 |
Zbl 0475.46016
[24] X. Xiaoping, C. Lixing, L. Goucheng and Y. Xiaobo:
Set valued mesures and integral representations. Comment. Math. Univ. Carolin. 37 (1996), 269–284.
MR 1399002