Previous |  Up |  Next

Article

Keywords:
weak compactness; measurable multifunctions; Radon-Nikodym property; multimeasures
Summary:
Some criteria for weak compactness of set valued integrals are given. Also we show some applications to the study of multimeasures on Banach spaces with the Radon-Nikodym property.
References:
[1] Z. Arststein: Weak convergence of set valued functions and control. SIAM, J. Control Optim. 13 (1975), 865–878. DOI 10.1137/0313052 | MR 0377661
[2] I.Assani and A. Klei: Parties décomposables compactes de $L_E^1$. C. R. Acad. Sci. Paris, Ser. I 294 (1982), 533–536. MR 0679937
[3] D. Barcenas and W. Urbina: Measurable multifunctions in non separable Banach spaces. SIAM, J. Math. Anal. 28 (1997), 1212–1226. DOI 10.1137/S0036141095296005 | MR 1466678
[4] C. Castaing: Weak compactness criteria in set valued integration. Laboratorie d’Analyse convex, prepublication 1995/03. Zbl 0918.28014
[5] C. Castaing and P. Clauzure: Compacite faible dans lespace des multifuntions integrablements bornees et minimizations. Ann. Mat. Pura Appl. (IV) 140 (1985), 345–364. MR 0807644
[6] C. Castaing and M. Valadier: Convex Analysis and Measurable Multifunctions. LNM 586, Springer Verlag, Berlin, 1977. MR 0467310
[7] W. J. Davis, T. Fiegel, W. B. Johnson and A. Pełczyński: Factoring weakly compact operators. J. Funct. Anal. 17 (1974), 311–327. DOI 10.1016/0022-1236(74)90044-5 | MR 0355536
[8] J. Diestel and W. Ruess and W. Schachermayer: On weak copactness in $L^1(\mu ,X)$. Proc. Amer. Math. Soc. 118 (1993), 443–453. DOI 10.1090/S0002-9939-1993-1132408-X | MR 1132408
[9] J. Diestel, J. J. Uhl: Vector measures. Amer. Math. Soc. Surveys vol.  15, Providence, R.I., 1977. MR 0453964
[10] C. Godet Thobie: Some results about multimeasures and their selectors. Measure Theory, D. Kölzow (ed.), LNM 794, Springer-Verlag, Berlin, 1980, pp. 112–116. MR 0577965 | Zbl 0432.28009
[11] N. Ghoussoub and P. Saab: Weak compactness in spaces of Bochner integrable functions and the Radon-Nikodym property. Pacific J. Math. 110 (1984), 65–70. DOI 10.2140/pjm.1984.110.65 | MR 0722738
[12] F. Hiai: Radon-Nikodym theorems for set valued measures. J. Multivariate Anal. 8 (1978), 96–118. DOI 10.1016/0047-259X(78)90022-2 | MR 0583862 | Zbl 0384.28006
[13] F. Hiai and H. Umegaki: Integrals, conditional expectations and martingales of multivalued functions. J. Multivariate Anal. 7 (1977), 149–182. DOI 10.1016/0047-259X(77)90037-9 | MR 0507504
[14] H. A. Klein: A compactness criteria in $L^1(E)$ and Radon-Nikodym theorems for multimeasures. Bull. Soc. Math. 2ê serie 112 (1988), 305–324.
[15] M. Muresan: On a boundary value problem for quasi-linear differential inclusions of evolution. Collect. Math. 45 (1994), 165–175. MR 1316934 | Zbl 0824.34017
[16] N. Papageorgiou: Contributions to the theory of set valued functions and set valued measures. Trans. Amer. Math. Soc. 304 (1987), 245–265. DOI 10.1090/S0002-9947-1987-0906815-3 | MR 0906815 | Zbl 0634.28004
[17] N. Papageorgiou: Boundary value problems for evolution inclusions. Comment. Math. Univ. Carolin. 29 (1988), 355–363. MR 0957404 | Zbl 0696.35074
[18] N. Papageorgiou: Decomponsable sets in the Lebesgue Bochner spaces. Comment. Math. Univ. St. Paul 37 (1988), 49–62. MR 0942305
[19] N. Papageorgiou: Radon-Nikodym theorem for multimeasures and transition multimeasures. Proc. Amer. Math. Soc. 111 (1991), 465–474. MR 1036989
[20] N. Papageorgiou: On the convergence properties of measurable multifuntions in a Banach space. Math. Japon. 37 (1992), 637–643. MR 1176035
[21] N. Papageorgiou: On the conditional expectation and convergence properties of Radon sets. Trans. Amer. Math. Soc. 347 (1995), 2495–2515. DOI 10.1090/S0002-9947-1995-1290728-9 | MR 1290728
[22] H. P. Rosenthal: A characterization of Banach spaces containing $l^1$. Proc. Nat. Acad. Sci. U.S.A. 71 (1974), 2411–2413. DOI 10.1073/pnas.71.6.2411 | MR 0358307
[23] C. Stegall: The Radon-Nikodym property in conjugate Banach Spaces II. Trans. Amer. Math. Soc. 264 (1981), 507–519. MR 0603779 | Zbl 0475.46016
[24] X. Xiaoping, C. Lixing, L. Goucheng and Y. Xiaobo: Set valued mesures and integral representations. Comment. Math. Univ. Carolin. 37 (1996), 269–284. MR 1399002
Partner of
EuDML logo