Article
Keywords:
all-paths convexity; transit function; block graph
Summary:
A transit function $R$ on a set $V$ is a function $R\:V\times V\rightarrow 2^{V}$ satisfying the axioms $u\in R(u,v)$, $R(u,v)=R(v,u)$ and $R(u,u)=\lbrace u\rbrace $, for all $u,v \in V$. The all-paths transit function of a connected graph is characterized by transit axioms.
References:
[1] P. Duchet:
Convexity in combinatorial structures. Rend. Circ. Mat. Palermo (2) Suppl. 14 (1987), 261–293.
MR 0920860 |
Zbl 0644.52001
[4] M. Farber and R. E. Jamison:
Convexity in graphs and hypergraphs. SIAM J. Algebraic Discrete Methods 7 (1986), 433–444.
DOI 10.1137/0607049 |
MR 0844046
[5] S. Klavžar and H. M. Mulder:
Median graphs: characterizations, location theory and related structures. J. Combin. Math. Combin. Comput. 30 (1999), 103–127.
MR 1705337
[6] H. M. Mulder:
The Interval Function of a Graph. Mathematical Centre Tracts 132, Mathematisch Centrum, Amsterdam, 1980.
MR 0605838 |
Zbl 0446.05039
[7] H. M. Mulder:
Transit functions on graphs. In preparation.
Zbl 1166.05019
[8] M. A. Morgana and H. M. Mulder:
The induced path convexity, betweenness, and svelte graphs. Discrete Math (to appear).
MR 1910118
[9] L. Nebeský:
A characterization of the interval function of a connected graph. Czechoslovak Math. J. 44(119) (1994), 173–178.
MR 1257943
[10] L. Nebeský:
Characterizing the interval function of a connected graph. Math. Bohem. 123(2) (1998), 137–144.
MR 1673965
[11] E. Sampathkumar:
Convex sets in graphs. Indian J. Pure Appl. Math. 15 (1984), 1065–1071.
MR 0765010
[12] M. L. J. van de Vel:
Theory of Convex Structures. North Holland, Amsterdam, 1993.
MR 1234493