Previous |  Up |  Next

Article

Keywords:
$n$-ary group; symmetry
Summary:
Properties of $n$-ary groups connected with the affine geometry are considered. Some conditions for an $n$-ary $rs$-group to be derived from a binary group are given. Necessary and sufficient conditions for an $n$-ary group $<\theta ,b>$-derived from an additive group of a field to be an $rs$-group are obtained. The existence of non-commutative $n$-ary $rs$-groups which are not derived from any group of arity $m<n$ for every $n\ge 3$, $r>2$ is proved.
References:
[11] R. Baer: Linear Algebra and Projective Geometry. Academic Press, New York, 1952. MR 0052795 | Zbl 0049.38103
[12] D. Brǎnzei: Structures affines et opérations ternaires. An. Ştiinţ. Univ. Iaşi Sect. I a Mat. (N.S.) 23 (1977), 33–38. MR 0460513
[9] J. Certaine: The ternary operation $(abc)=ab^{-1}c $ of a group. Bull. Amer. Math. Soc. 49 (1943), 869–877. DOI 10.1090/S0002-9904-1943-08042-1 | MR 0009953
[6] W. Dörnte: Untersuchungen über einen verallgemeinerten Gruppenbegriff. Math. Z. 29 (1928), 1–19. DOI 10.1007/BF01180515
[2] W. A. Dudek: Remarks on $n$-groups. Demonstratio Math. 13 (1980), 165–181. MR 0593068 | Zbl 0447.20052
[3] W. A. Dudek: Varieties of polyadic groups. Filomat 9 (1995), 657–674. MR 1385945 | Zbl 0860.20056
[7] W. A. Dudek: On the class of weakly semiabelian polyadic groups. Diskret. Mat. 8 (1996), 40–46. (Russian) MR 1422347 | Zbl 0868.20055
[1] W. A. Dudek, B. Gleichgewicht and K. Głazek: A note on the axioms of $n$-groups. Colloquia Math. Soc. János Bolyai, 29. Universal Algebra, Esztergom (Hungary), 1977, pp. 195–202.
[8] W. A. Dudek and J. Michalski: On retracts of polyadic groups. Demonstratio Math. 17 (1984), 281–301. MR 0771552
[16] J. I. Kulachgenko: Geometry of parallelograms. Vopr. Algeb. and Prik. Mat., Izdat. Belorus. Gos. Univ. Transp., Gomel, 1995, pp. 47–64. (Russian)
[10] H. Prüfer: Theorie der Abelschen Gruppen. Math. Z. 20 (1924), 166–187. DOI 10.1007/BF01188079 | MR 1544670
[4] S. A. Rusakov: A definition of $n$-ary group. Dokl. Akad. Nauk Belarusi 23 (1972), 965–967. (Russian) MR 0555191
[5] S. A. Rusakov: Existence of $n$-ary $rs$-groups. Voprosy Algebry 6 (1992), 89–92. (Russian) MR 1647791
[15] S. A. Rusakov: Vectors of $n$-ary groups. Linear operations and their properties. Vopr. Algeb. and Prik., Mat. Izdat. Belorus. Gos. Univ. Transp., Gomel, 1995, pp. 10–30. (Russian)
[13] W. Szmielew: From the Affine to Euclidean Geometry (Polish edition). PWN Warszawa, 1981. MR 0664205
[14] W. Szmielew: Theory of $n$-ary equivalences and its application to geometry. Dissertationes Math. 191 (1980).
[17] L. Takhtajan: On foundation of the generalized Nambu mechanics. Comm. Math. Phys. 160 (1994), 295–315. DOI 10.1007/BF02103278 | MR 1262199 | Zbl 0808.70015
[18] L. Vainerman and R. Kerner: On special classes of $n$-algebras. J. Math. Phys. 37 (1996), 2553–2565. DOI 10.1063/1.531526 | MR 1385846
Partner of
EuDML logo