[12] D. Brǎnzei:
Structures affines et opérations ternaires. An. Ştiinţ. Univ. Iaşi Sect. I a Mat. (N.S.) 23 (1977), 33–38.
MR 0460513
[6] W. Dörnte:
Untersuchungen über einen verallgemeinerten Gruppenbegriff. Math. Z. 29 (1928), 1–19.
DOI 10.1007/BF01180515
[7] W. A. Dudek:
On the class of weakly semiabelian polyadic groups. Diskret. Mat. 8 (1996), 40–46. (Russian)
MR 1422347 |
Zbl 0868.20055
[1] W. A. Dudek, B. Gleichgewicht and K. Głazek: A note on the axioms of $n$-groups. Colloquia Math. Soc. János Bolyai, 29. Universal Algebra, Esztergom (Hungary), 1977, pp. 195–202.
[8] W. A. Dudek and J. Michalski:
On retracts of polyadic groups. Demonstratio Math. 17 (1984), 281–301.
MR 0771552
[16] J. I. Kulachgenko: Geometry of parallelograms. Vopr. Algeb. and Prik. Mat., Izdat. Belorus. Gos. Univ. Transp., Gomel, 1995, pp. 47–64. (Russian)
[4] S. A. Rusakov:
A definition of $n$-ary group. Dokl. Akad. Nauk Belarusi 23 (1972), 965–967. (Russian)
MR 0555191
[5] S. A. Rusakov:
Existence of $n$-ary $rs$-groups. Voprosy Algebry 6 (1992), 89–92. (Russian)
MR 1647791
[15] S. A. Rusakov: Vectors of $n$-ary groups. Linear operations and their properties. Vopr. Algeb. and Prik., Mat. Izdat. Belorus. Gos. Univ. Transp., Gomel, 1995, pp. 10–30. (Russian)
[13] W. Szmielew:
From the Affine to Euclidean Geometry (Polish edition). PWN Warszawa, 1981.
MR 0664205
[14] W. Szmielew: Theory of $n$-ary equivalences and its application to geometry. Dissertationes Math. 191 (1980).