Previous |  Up |  Next

Article

Keywords:
complex projective space; real hypersurfaces; holomorphic distribution
Summary:
We characterize homogeneous real hypersurfaces $M$’s of type $(A_1)$, $(A_2)$ and $(B)$ of a complex projective space in the class of real hypersurfaces by studying the holomorphic distribution $T^0M$ of $M$.
References:
[1] T. Cecil and P. Ryan: Focal sets and real hypersurfaces in complex projective space. Trans.  Amer.  Math.  Soc. 269 (1982), 481–499. MR 0637703
[2] M. Kimura: Real hypersurfaces and complex submanifolds in complex projective space. Trans.  Amer.  Math.  Soc. 296 (1986), 137–149. DOI 10.1090/S0002-9947-1986-0837803-2 | MR 0837803 | Zbl 0597.53021
[3] M. Kimura and S. Maeda: On real hypersurfaces of a complex projective space. Math.  Z. 202 (1989), 299–311. DOI 10.1007/BF01159962 | MR 1017573
[4] M. Kimura and S. Maeda: Lie derivatives on real hypersurfaces in a complex projective space. Czechoslovak Math.  J. 45 (1995), 135–148. MR 1314536
[5] Y. Maeda: On real hypersurfaces of a complex projective space. J.  Math.  Soc. Japan 28 (1976), 529–540. DOI 10.2969/jmsj/02830529 | MR 0407772 | Zbl 0324.53039
[6] K. Ogiue: Differential geometry of Kaehler submanifolds. Adv. Math. 13 (1974), 73–114. DOI 10.1016/0001-8708(74)90066-8 | MR 0346719 | Zbl 0275.53035
[7] R. Takagi: On homogeneous real hypersurfaces of a complex projective space. Osaka J.  Math.  10 (1973), 495–506. MR 0336660
[8] R. Takagi: Real hypersurfaces in a complex projective space with constant principal curvatures I, II. J.  Math.  Soc.  Japan 27 (1975), 43–53, 507–516. DOI 10.2969/jmsj/02710043 | MR 0400120
Partner of
EuDML logo