Previous |  Up |  Next

Article

Keywords:
autometrized algebra; annihilator; relative annihilator; ideal; polar
Summary:
The concepts of an annihilator and a relative annihilator in an autometrized $l$-algebra are introduced. It is shown that every relative annihilator in a normal autometrized $l$-algebra $\mathcal {A}$ is an ideal of $\mathcal {A}$ and every principal ideal of $\mathcal {A}$ is an annihilator of $\mathcal {A}$. The set of all annihilators of $\mathcal {A}$ forms a complete lattice. The concept of an $I$-polar is introduced for every ideal $I$ of $\mathcal {A}$. The set of all $I$-polars is a complete lattice which becomes a two-element chain provided $I$ is prime. The $I$-polars are characterized as pseudocomplements in the lattice of all ideals of $\mathcal {A}$ containing $I$.
References:
[1] R. Balbes and P. Dwinger: Distributive Lattices. Univ. of Missouri Press, 1974. MR 0373985
[2] I. Chajda: Indexed annihilators in lattices. Arch. Math.  (Brno) 31 (1995), 259–262. MR 1390584 | Zbl 0860.06005
[3] M. E. Hansen: Minimal prime ideals in autometrized algebras. Czechoslovak Math. J. 44 (119) (1994), 81–90. MR 1257938 | Zbl 0814.06011
[4] T. Kovář: Normal autometrized $l$-algebras. Math. Slovaca (to appear). MR 1857295
[5] M. Mandelker: Relative annihilators in lattices. Duke Math. J. 49 (1979), 377–386. MR 0256951
[6] J. Rachůnek: Prime ideals in autometrized algebras. Czechoslovak Math.  J. 37 (112) (1987), 65–69. MR 0875128
[7] J. Rachůnek: Polars in autometrized algebras. Czechoslovak Math.  J. 39 (114) (1989), 681–685. MR 1018003
[8] K. L. N. Swamy: A general theory of autometrized algebras. Math. Ann. 157 (1964), 65–74. DOI 10.1007/BF01362667 | MR 0170842 | Zbl 0135.02602
[9] K. L. N. Swamy and N. P. Rao: Ideals in autometrized algebras. J.  Austral. Math. Soc. (Ser. A) 24 (1977), 362–374. DOI 10.1017/S1446788700020383 | MR 0469843
Partner of
EuDML logo