Article
Keywords:
Gauss map; $B$-scroll; ruled surfce
Summary:
In this note we show that $B$-scrolls over null curves in a 3-dimensional Lorentzian space form $\bar{M}^3_1(c)$ are characterized as the only ruled surfaces with null rulings whose Gauss maps $G$ satisfy the condition $\Delta G=\Lambda G$, $\Lambda \:{X}(\bar{M})\rightarrow {X}(\bar{M})$ being a parallel endomorphism of ${X}(\bar{M})$.
References:
[AFL2-type] L. J. Alías, A. Ferrández and P. Lucas:
2-type surfaces in $\mathbb{S}_1^3$ and $\mathbb{H}_1^3$. Tokyo J. Math. 17 (1994), 447–454.
MR 1305812
[AFLeigenvector] L. J. Alías, A. Ferrández and P. Lucas:
Hypersurfaces in the non-flat Lorentzian space forms with a characteristic eigenvector field. J. Geom. 52 (1995), 10–24.
DOI 10.1007/BF01406822 |
MR 1317251
[DajczerNomizu80] M. Dajczer and K. Nomizu:
On flat surfaces in $\mathbb{S}_1^3$ and $\mathbb{H}_1^3$. Manifolds and Lie Groups, Univ. Notre Dame, Indiana, Birkhäuser, 1981, pp. 71–108.
MR 0642853