Previous |  Up |  Next

Article

Keywords:
Newton’s method; Banach space; Fréchet-derivative; local convergence; outer inverse; generalized inverse
Summary:
We provide local convergence theorems for Newton’s method in Banach space using outer or generalized inverses. In contrast to earlier results we use hypotheses on the second instead of the first Fréchet-derivative. This way our convergence balls differ from earlier ones. In fact we show that with a simple numerical example that our convergence ball contains earlier ones. This way we have a wider choice of initial guesses than before. Our results can be used to solve undetermined systems, nonlinear least squares problems and ill-posed nonlinear operator equations.
References:
[1] M. Anitescu, D. I. Coroian, M. Z. Nashed, F. A. Potra: Outer inverses and multi-body system simulation. Numer. Funct. Anal. Optim. 17 (7 and 8) (1996), 661–678. DOI 10.1080/01630569608816717 | MR 1421973
[2] I. K. Argyros: On the solution of undetermined systems of nonlinear equations in Euclidean spaces. Pure Math. Appl. 4, 3 (1993), 199–209. MR 1270429 | Zbl 0809.47053
[3] I. K. Argyros: On the discretization of Newton-like methods. Int. J. Comput. Math. 52 (1994), 161–170. DOI 10.1080/00207169408804301
[4] I. K. Argyros: Comparing the radii of some balls appearing in connection to three local convergence theorems for Newton’s method. Southwest J. Pure Appl. Math. 1 (1998). MR 1644490 | Zbl 0907.65053
[5] I. K. Argyros: Semilocal convergence theorems for a certain class of iterative procedures using outer or generalized inverses and hypotheses on the second Fréchet-derivative. Korean J. Comput. Appl. Math. 6 (1999). MR 1732001
[6] I. K. Argyros, F. Szidarovszky: The Theory and Application of Iteration Methods. CRC Press, Inc., Boca Raton, Florida, U.S.A., 1993. MR 1272012
[7] A. Ben-Israel: A Newton-Raphson method for the solution of equations. J. Math. Anal. Appl. 15 (1966), 243–253. DOI 10.1016/0022-247X(66)90115-6 | MR 0205445
[8] A. Ben-Israel, T. N. E. Greville: Generalized Inverses: Theory and Applications. John Wiley and Sons, New York, 1974. MR 0396607
[9] X. Chen, M. Z. Nashed: Convergence of Newton-like methods for singular operator equations using outer inverses. Numer. Math. 66 (1993), 235–257. DOI 10.1007/BF01385696 | MR 1245013
[10] X. Chen, M. Z. Nashed, L. Qi: Convergence of Newton’s method for singular and nonsmooth equations using outer inverses. SIAM J. Optim. 7 (1997), 445–462. DOI 10.1137/S1052623493246288 | MR 1443628
[11] P. Deuflhard, G. Heindl: Affine invariant convergence theorems for Newton’s method and extensions to related methods. SIAM J. Numer. Anal. 16 (1979), 1–10. DOI 10.1137/0716001 | MR 0518680
[12] W. M. Häubler: A Kantorovich-type convergence analysis for the Gauss-Newton method. Numer. Math. 48 (1986), 119–125. DOI 10.1007/BF01389446 | MR 0817125
[13] L. V. Kantorovich, G. P. Akilov: Functional Analysis. Pergamon Press, Oxford, 1982. MR 0664597
[14] M. Z. Nashed: Inner, outer and generalized inverses in Banach and Hilbert spaces. Numer. Funct. Anal. Optim. 9 (1987), 261–325. DOI 10.1080/01630568708816235 | MR 0887072 | Zbl 0633.47001
Partner of
EuDML logo