[1] M. Anitescu, D. I. Coroian, M. Z. Nashed, F. A. Potra:
Outer inverses and multi-body system simulation. Numer. Funct. Anal. Optim. 17 (7 and 8) (1996), 661–678.
DOI 10.1080/01630569608816717 |
MR 1421973
[2] I. K. Argyros:
On the solution of undetermined systems of nonlinear equations in Euclidean spaces. Pure Math. Appl. 4, 3 (1993), 199–209.
MR 1270429 |
Zbl 0809.47053
[4] I. K. Argyros:
Comparing the radii of some balls appearing in connection to three local convergence theorems for Newton’s method. Southwest J. Pure Appl. Math. 1 (1998).
MR 1644490 |
Zbl 0907.65053
[5] I. K. Argyros:
Semilocal convergence theorems for a certain class of iterative procedures using outer or generalized inverses and hypotheses on the second Fréchet-derivative. Korean J. Comput. Appl. Math. 6 (1999).
MR 1732001
[6] I. K. Argyros, F. Szidarovszky:
The Theory and Application of Iteration Methods. CRC Press, Inc., Boca Raton, Florida, U.S.A., 1993.
MR 1272012
[8] A. Ben-Israel, T. N. E. Greville:
Generalized Inverses: Theory and Applications. John Wiley and Sons, New York, 1974.
MR 0396607
[9] X. Chen, M. Z. Nashed:
Convergence of Newton-like methods for singular operator equations using outer inverses. Numer. Math. 66 (1993), 235–257.
DOI 10.1007/BF01385696 |
MR 1245013
[10] X. Chen, M. Z. Nashed, L. Qi:
Convergence of Newton’s method for singular and nonsmooth equations using outer inverses. SIAM J. Optim. 7 (1997), 445–462.
DOI 10.1137/S1052623493246288 |
MR 1443628
[11] P. Deuflhard, G. Heindl:
Affine invariant convergence theorems for Newton’s method and extensions to related methods. SIAM J. Numer. Anal. 16 (1979), 1–10.
DOI 10.1137/0716001 |
MR 0518680
[13] L. V. Kantorovich, G. P. Akilov:
Functional Analysis. Pergamon Press, Oxford, 1982.
MR 0664597