Previous |  Up |  Next

Article

Keywords:
quasilinear wave equation; existence and uniqueness; asymptotic behavior; Galerkin method
Summary:
In this paper we consider the existence and asymptotic behavior of solutions of the following problem: \[ u_{tt}(t,x)-(\alpha +\beta \Vert \nabla u(t,x)\Vert _2^2 +\beta \Vert \nabla v(t,x)\Vert _2^2)\Delta u(t,x) +\delta |u_t(t,x)|^{p-1}u_t(t,x) \quad =\mu |u(t,x)|^{q-1}u(t,x), \quad x \in \Omega ,\quad t \ge 0, v_{tt}(t,x)-(\alpha +\beta \Vert \nabla u(t,x)\Vert _2^2+ \beta \Vert \nabla v(t,x)\Vert _2^2) \Delta v(t,x) +\delta |v_t(t,x)|^{p-1}v_t(t,x) \quad =\mu |v(t,x)|^{q-1}v(t,x), \quad x \in \Omega ,\quad t \ge 0, u(0,x)=u_0(x),\quad u_t(0,x)=u_1(x), \quad x \in \Omega , v(0,x)=v_0(x),\quad v_t(0,x)=v_1(x), \quad x \in \Omega , u|_{_{\partial \Omega }}=v|_{_{\partial \Omega }}=0 \] where $q > 1$, $ p \ge 1$, $ \delta >0$, $ \alpha > 0$, $ \beta \ge 0 $, $\mu \in \mathbb R $ and $\Delta $ is the Laplacian in $\mathbb R^N$.
References:
[1] E. H. Brito: Nonlinear Initial Boundary Value Problems. Nonlinear Anal. 11 (1987), 125–137. DOI 10.1016/0362-546X(87)90031-9 | MR 0872045 | Zbl 0613.34013
[2] C. Corduneanu: Principles of Differential and Integral Equations. Chelsea Publishing Company, The Bronx, New York, 1977. MR 0440097
[3] R. Ikehata: On the Existence of Global Solutions for some Nonlinear Hyperbolic Equations with Neumann Conditions. T R U Math. 24 (1988), 1–17. MR 0999375 | Zbl 0707.35094
[4] T. Matsuyama, R. Ikehata: On Global Solutions and Energy Decay for the Wave Equations of Kirchhoff type with Nonlinear Damping terms. J. Math. Anal. Appl. 204 (1996), 729–753. DOI 10.1006/jmaa.1996.0464 | MR 1422769
[5] M. Nakao: Asymptotic Stability of the Bounded or Almost Periodic Solutions of the Wave Equations with Nonlinear Damping terms. J. Math. Anal. Appl. 58 (1977), 336–343. DOI 10.1016/0022-247X(77)90211-6 | MR 0437890
[6] K. Narasimha: Nonlinear Vibration of an Elastic String. J. Sound Vibration 8 (1968), 134–146. DOI 10.1016/0022-460X(68)90200-9
[7] K. Nishihara, Y. Yamada: On Global Solutions of some Degenerate Quasilinear Hyperbolic Equation with Dissipative Damping terms. Funkcial. Ekvac. 33 (1990), 151–159. MR 1065473
[8] K. Ono: Global Existence, Decay and Blowup of Solutions for some Mildly Degenerate Nonlinear Kirchhoff Strings. J. Differential Equations 137 (1997), 273–301. DOI 10.1006/jdeq.1997.3263 | MR 1456598 | Zbl 0879.35110
[9] M. D. Silva Alves: Variational Inequality for a Nonlinear Model of the Oscillations of Beams. Nonlinear Anal. 28 (1997), 1101–1108. MR 1422803 | Zbl 0871.35064
Partner of
EuDML logo