[DFP] J. C. Díaz, M. Florencio, P. J. Paúl:
A uniform boundedness theorem for $L^{\infty }(\mu ,E)$. Arch. Math. (Basel) 60 (1993), 73–78.
DOI 10.1007/BF01194241 |
MR 1193096
[DFFP] S. Díaz, A. Fernández, M. Florencio, P. J. Paúl:
An abstract Banach-Steinhaus theorem and applications to function spaces. Results Math. 23 (1993), 242–250.
DOI 10.1007/BF03322300 |
MR 1215213
[DFP1] L. Drewnowski, M. Florencio, P. J. Paúl:
Barrelled subspaces of spaces with subseries decompositions or Boolean rings of projections. Glasgow Math. J. 36 (1994), 57–69.
DOI 10.1017/S0017089500030548 |
MR 1260818
[DFP2] L. Drewnowski, M. Florencio, P. J. Paúl:
Barrelled function spaces. Progress in Functional Analysis, K.D. Bierstedt et al. (eds.), North-Holland Math. Studies, Elsevier/North-Holland, Amsterdam, Oxford, New York and Tokyo, 1992, pp. 191–199.
MR 1150746
[DFP3] L. Drewnowski, M. Florencio, P. J. Paúl:
On the barrelledness of spaces of bounded vector functions. Arch. Math. (Basel) 63 (1994), 449–458.
MR 1300741
[FPS] M. Florencio, P. J. Paúl, C. Sáez:
Barrelledness in $\lambda $-sums of normed spaces. Simon Stevin 63 (1989), 209–217.
MR 1061568
[KR] J. Kakol, W. Roelcke:
On the barrelledness of $\ell ^{p}$-direct sums of seminormed spaces for $1\le p\le \infty $. Arch. Math. (Basel) 62 (1994), 331–334.
MR 1264704
[K] G. Köthe:
Topological Vector Spaces I. Springer-Verlag, Berlin, Heidelberg and New York, 1969.
MR 0248498
[BP] P. Pérez Carreras, J. Bonet:
Barrelled Locally Convex Spaces. North-Holland Math. Studies, North-Holland, Amsterdam, New York, Oxford and Tokyo, 1987.
MR 0880207