Previous |  Up |  Next

Article

Keywords:
Ordered set; distributive set; ideal; prime ideal; $R$-polar; annihilator
Summary:
In the paper, the notion of relative polarity in ordered sets is introduced and the lattices of $R$-polars are studied. Connections between $R$-polars and prime ideals, especially in distributive sets, are found.
References:
[1] Anderson, M., Feil, T.: Lattice-Ordered Groups (An Introduction). Dordrecht, Reidel, 1987. MR 0937703
[2] Chajda, I.: Complemented ordered sets. Arch. Math. (Brno) 28 (1992), 25–34. MR 1201863 | Zbl 0785.06002
[3] Chajda, I., Halaš, R.: Indexed annihilators in ordered sets. Math. Slovaca 45 (1995), 501–508. MR 1390703
[4] Chajda, I., Rachůnek, J.: Forbidden configurations for distributive and modular ordered sets. Order 5 (1989), 407–423. DOI 10.1007/BF00353659 | MR 1010389
[5] Duffus, D., Rival, I.: A structure theory for ordered sets. Discrete Math. 35 (1981), 53–110. DOI 10.1016/0012-365X(81)90201-6 | MR 0620665
[6] Erné, M.: Distributivgesetze und die Dedekindsche Schnittverwollständigung. Abh. Braunschweig. Wiss. Ges. 33 (1982), 117–145. MR 0693169
[7] Grätzer, G.: Lattice Theory. Akademie Verlag, Berlin, 1978. MR 0504338
[8] Halaš, R.: Pseudocomplemented ordered sets. Arch. Math. (Brno) 29 (1993), 153–160. MR 1263116
[9] Halaš, R.: Characterization of distributive sets by generalized annihilators. Arch. Math. (Brno) 30 (1994), 25–27. MR 1282110
[10] Halaš, R.: Decompositions of directed sets with zero. Math. Slovaca 45 (1995), 9–17. MR 1335835
[11] Halaš, R.: Ideals and annihilators in ordered sets. Czechoslovak Math. J. 45(120) (1995), 127–134. MR 1314535
[12] Halaš, R.: Some properties of Boolean ordered sets. Czechoslovak Math. J. 46(121) (1996), 93–98. MR 1371691
[13] Halaš, R.: A characterization of finite Stone PC-ordered sets. Math. Bohem. 121 (1996), 117–120. MR 1400602
[14] Halaš, R.: Annihilators and ideals in distributive and modular ordered sets. Acta Univ. Palack. Olomouc. Fac. Rerum Natur. Math. 34 (1995), 31–37. MR 1447252
[15] Halaš, R., Rachůnek, J.: Polars and prime ideals in ordered sets. Discuss. Math., Algebra and Stochastic Methods 15 (1995), 43–59. MR 1369627
[16] Jakubík, J.: $M$-polars in lattices. Čas. Pěst. Mat. 95 (1970), 252–255. MR 0274352
[17] Katriňák, T.: $M$-Polaren in halbgeordneten Mengen. Čas. Pěst. Mat. 95 (1970), 416–419. MR 0279004
[18] Larmerová, J., Rachůnek, J.: Translations of modular and distributive ordered sets. Acta Univ. Palack. Olomouc. Fac. Rerum Natur. Math. 27(91) (1988), 13–23. MR 1039879
[19] Niederle, J.: Boolean and distributive ordered sets: Characterization and representation by sets (preprint). MR 1354802
[20] Rachůnek, J.: A characterization of $o$-distributive semilattices. Acta Sci. Math. (Szeged) 54 (1990), 241–246. MR 1096803
[21] Rachůnek, J.: On $o$-modular and $o$-distributive semilattices. Math. Slovaca 42 (1992), 3–13.
[22] Rachůnek, J.: The ordinal variety of distributive ordered sets of width two. Acta Univ. Palack. Olomouc. Fac. Rerum Natur. Math. 30(100) (1991), 17–32. MR 1166422
[23] Rachůnek, J.: Non-modular and non-distributive ordered sets of lattices. Acta Univ. Palack. Olomouc. Fac. Rerum Natur. Math. 32(110) (1993), 141–149.
[24] Šik, F.: A characterization of polarities the lattice of polars of which is Boolean. Czechoslovak Math. J. 91(106) (1981), 98–102.
Partner of
EuDML logo