[1] Anderson, M., Feil, T.:
Lattice-Ordered Groups (An Introduction). Dordrecht, Reidel, 1987.
MR 0937703
[3] Chajda, I., Halaš, R.:
Indexed annihilators in ordered sets. Math. Slovaca 45 (1995), 501–508.
MR 1390703
[6] Erné, M.:
Distributivgesetze und die Dedekindsche Schnittverwollständigung. Abh. Braunschweig. Wiss. Ges. 33 (1982), 117–145.
MR 0693169
[7] Grätzer, G.:
Lattice Theory. Akademie Verlag, Berlin, 1978.
MR 0504338
[8] Halaš, R.:
Pseudocomplemented ordered sets. Arch. Math. (Brno) 29 (1993), 153–160.
MR 1263116
[9] Halaš, R.:
Characterization of distributive sets by generalized annihilators. Arch. Math. (Brno) 30 (1994), 25–27.
MR 1282110
[10] Halaš, R.:
Decompositions of directed sets with zero. Math. Slovaca 45 (1995), 9–17.
MR 1335835
[11] Halaš, R.:
Ideals and annihilators in ordered sets. Czechoslovak Math. J. 45(120) (1995), 127–134.
MR 1314535
[12] Halaš, R.:
Some properties of Boolean ordered sets. Czechoslovak Math. J. 46(121) (1996), 93–98.
MR 1371691
[13] Halaš, R.:
A characterization of finite Stone PC-ordered sets. Math. Bohem. 121 (1996), 117–120.
MR 1400602
[14] Halaš, R.:
Annihilators and ideals in distributive and modular ordered sets. Acta Univ. Palack. Olomouc. Fac. Rerum Natur. Math. 34 (1995), 31–37.
MR 1447252
[15] Halaš, R., Rachůnek, J.:
Polars and prime ideals in ordered sets. Discuss. Math., Algebra and Stochastic Methods 15 (1995), 43–59.
MR 1369627
[16] Jakubík, J.:
$M$-polars in lattices. Čas. Pěst. Mat. 95 (1970), 252–255.
MR 0274352
[17] Katriňák, T.:
$M$-Polaren in halbgeordneten Mengen. Čas. Pěst. Mat. 95 (1970), 416–419.
MR 0279004
[18] Larmerová, J., Rachůnek, J.:
Translations of modular and distributive ordered sets. Acta Univ. Palack. Olomouc. Fac. Rerum Natur. Math. 27(91) (1988), 13–23.
MR 1039879
[19] Niederle, J.:
Boolean and distributive ordered sets: Characterization and representation by sets (preprint).
MR 1354802
[20] Rachůnek, J.:
A characterization of $o$-distributive semilattices. Acta Sci. Math. (Szeged) 54 (1990), 241–246.
MR 1096803
[21] Rachůnek, J.: On $o$-modular and $o$-distributive semilattices. Math. Slovaca 42 (1992), 3–13.
[22] Rachůnek, J.:
The ordinal variety of distributive ordered sets of width two. Acta Univ. Palack. Olomouc. Fac. Rerum Natur. Math. 30(100) (1991), 17–32.
MR 1166422
[23] Rachůnek, J.: Non-modular and non-distributive ordered sets of lattices. Acta Univ. Palack. Olomouc. Fac. Rerum Natur. Math. 32(110) (1993), 141–149.
[24] Šik, F.: A characterization of polarities the lattice of polars of which is Boolean. Czechoslovak Math. J. 91(106) (1981), 98–102.