[Bollobas-Cockayne] B. Bollobás and E. J. Cockayne:
Graph-theoretic parameters concerning domination, independence and irredundance. J. Graph Theory 3 (1979), 241–249.
DOI 10.1002/jgt.3190030306 |
MR 0542545
[Fink-Jacobson-1] J. F. Fink and M. S. Jacobson:
$n$-domination in graphs. Graph Theory with Applications to Algorithms and Computer Science. John Wiley & Sons, New York, 1985, pp. 283–300.
MR 0812671
[Fink-Jacobson-2] J. F. Fink and M. S. Jacobson:
On $n$-domination, $n$-dependence and forbidden subgraphs. Graph Theory with Applications to Algorithms and Computer Science. John Wiley & Sons, New York, 1985, pp. 301–311.
MR 0812672
[Graver-Watkins] J. E. Graver and M. E. Watkins:
Combinatorics with Emphasis on the Theory of Graphs. Springer-Verlag, New York, 1977.
MR 0505525
[Hedetniemi-Hedetniemi-Laskar] S. Hedetniemi, S. Hedetniemi and R. Laskar:
Domination in trees: models and algorithms. Graph Theory with Applications to Algorithms and Computer Science. John Wiley & Sons, New York, 1985, pp. 423–442.
MR 0812681
[Stracke-Volkmann] C. Stracke and L. Volkmann:
A new domination conception. J. Graph Theory 17 (1993), 315–323.
MR 1220992
[Zhou] S. M. Zhou:
On $f$-domination number of a graph. Czechoslovak Math. J. 46(121) (1996), 489–499.
MR 1408300 |
Zbl 0879.05037
[Zhou-Zhang] S. M. Zhou and J. Y. Zhang: Invariants concerning $f$-domination in graphs. Combinatorics and Graph Theory ’95. World Scientific, River Edge, NJ, 1999.
[Zhou-1] S. M. Zhou and X. N. Yue: Gallai-type equalities for $f$-domination and connected $f$-domination numbers. Graph Theory Notes of New York XXIX (1995), 30–32.